
⼈⼯智能与芯⽚设计

燕博南
2023秋

22530007

3-单核CPU

Peking University

Instruction Set Architecture (ISA)

• The contract between software and hardware
• Typically described by giving all the programmer-visible state (registers + memory)

plus the semantics of the instructions that operate on that state
• IBM 360 was first line of machines to separate ISA from implementation (aka.

microarchitecture)
• Many implementations possible for a given ISA

• E.g., Soviets built code-compatible clones of the IBM360, as did Amdahl after he left IBM
• E.g.2., AMD, Intel, VIA processors run the AMD64 ISA
• E.g.3: many cellphones use the ARM ISA with implementations from many different companies

including Apple, Qualcomm, Samsung, Huawei, etc.

• We use ARM/RISC-V as standard ISA in class (www.riscv.org)
• Many companies and open-source projects build RISC-V implementations

Peking University

ISA to Microarchitecture Mapping

• ISA often designed with particular microarchitectural style in mind,
e.g.,

Accumulator/Adder Þ hardwired, unpipelined
CISC (Complex instruction set computer) Þ microcoded
RISC (Reduced instruction set computer) Þ microcoded, pipelined
VLIW (Very long instruction word) Þ fixed-latency in-order parallel pipelines
JVM (Java virtual machine) Þ software interpretation

• But can be implemented with any microarchitectural style
ˑ Intel Ivy Bridge: hardwired pipelined CISC (x86) machine (with some microcode

support)
ˑ Apple M1/M2 (native ARM ISA, emulates x86 in software)
ˑ ARM Jazelle: A hardware JVM processor
ˑ This lecture: a microcoded RISC-V machine

Peking University

Control versus Datapath

• Processor designs can be split between
• datapath, where numbers are stored and arithmetic operations

computed, and
• control, which sequences operations on datapath

A computer is just a big fancy
state machine.

Peking University

John von Neumann
• In the old days, “programming” involved actually changing a machine’s

physical configuration by flipping switches or connecting wires.
• A computer could run just one program at a time.
• Memory only stored data that was being operated on.

• Then around 1944, John von Neumann and others got the idea to encode
instructions in a format that could be stored in memory just like data.
• The processor interprets and executes instructions from memory.
• One machine could perform many different tasks, just by loading different

programs into memory.
• The“stored program” design is often called a Von Neumann machine.

Peking University

Memories

• Harvard architecture :
• programs and data stored in separate memories.

• Blue lines represent control signals. MemRead
and MemWrite should be set to 1 if the data
memory is to be read or written respectively,
and 0 otherwise.

• When a control signal does something when it
is set to 1, we call it active high(vs. active low)
because 1 is usually a higher voltage than 0.

• Pretend its already loaded with a program,
which doesnt change while its running.

32b

32b

32b

32b
32b

Peking University

Instruction Fetching

• The CPU is in a infinite loop

• The program counter or PC register holds the address of the
current instruction

• Given our instruction is 4 byte (32b) long
• >> PC = PC + 4 after obtaining an instruction

Peking University

Encoding R-type instructions

• Register-to-register arithmetic instructions use the R-type
format.
• op is the instruction opcode, and func specifies a particular

arithmetic operation
• rs, rt and rd are source and destination registers.

• Example
Now pretend you know assembly!

Peking University

Register File & ALU

• R-type instructions must access registers and an ALU

• Our register file stores thirty-two 32-bit values.
• Each register specifier is 5 bits long.
• You can read from two registers at a time (2 ports).
• RegWrite is 1 if a register should be written.

• Here’s a simple ALU with five operations, selected by a 3-bit
control signal ALUOp.

Peking University

Executing an R-type instruction

• Fetch an instruction from
“instruction memory”

• Fetch data from registers rs &
rt

• ALU does computation

• Put results into rd

Peking University

Encoding I-type instructions

• Immediate number instructions (I-type)
• Rt is the destination for lw, but a source for beq and sw
• Address is a 16-bit signed constant

• Example

Peking University

Accessing Data Memory

Data memory Address: (the content in x22)+64
Operation: load the data in the “data memory” into x9

Peking University

Branches
• For branch instructions, next PC should be obtained in the

BEQ: if rs1==rs2, then to go to the current PC+offset

Peking University

So Execute BEQ should be:

1. Fetch the instruction, like beq $at, $0, offset, from memory.

2. Compare $at and $0

3. If yes, next PC = PC + offset * 4 byte/instruction

Peking University

Hardware

Peking University

Hardware

Peking University

Final Hardware

Review A Little Bit

Peking University

Review: RV32I Processor State

Program counter (pc)

32x32-bit integer registers (x0-x31)
• x0 always contains a 0

32 floating-point (FP) registers (f0-f31)
• each can contain a single- or double-
precision FP value (32-bit or 64-bit IEEE
FP)

FP status register (fcsr), used for FP
rounding mode & exception reporting

Peking University

RISC-V Instruction Encoding

• Can support variable-length instructions.
• Base instruction set (RV32) always has fixed 32-bit instructions lowest two bits =
112
• All branches and jumps have targets at 16-bit granularity (even in base ISA where
all instructions are fixed 32 bits)

20

Peking University

RISC-V Instruction Formats

Destination
Reg.

Reg. Source 1

Reg. Source 2
7-bit opcode
field (but low 2
bits =112)

Additional
opcode
bits/immediate

Peking University

Single-Bus Datapath for Microcoded RISC-V

Microinstructions written as register transfers:

• MA:=PC means RegSel=PC; RegW=0; RegEn=1; MALd=1

• B:=Reg[rs2] means RegSel=rs2; RegW=0; RegEn=1; BLd=1

• Reg[rd]:=A+B means ALUop=Add; ALUEn=1; RegSel=rd; RegW=1

Condition?

Main
Memory

PC

Re
gi

st
er

s

AL
U

32
b

(P
C)

rdrs
1

rs
2

Re
gi

st
er

 R
AM

Address

InData OutIn
st

ru
ct

io
n

Re
g.

M
em

. A
dd

re
ssB

AIm
m

ed
ia

te

ImmEn RegEn ALUEn MemEn

AL
U

O
p

M
em

W

Im
m

Se
l

Re
gW

BL
dIn

st
Ld

M
AL

d

AL
d

RegSel

Busy?Opcode

Peking University

Inside Instruction Memory
Address | Data

µPC Opcode Cond? Busy? | Control Lines Next µPC
fetch0 X X X | MA,A:=PC fetch1
fetch1 X X 1 | fetch1
fetch1 X X 0 | IR:=Mem fetch2
fetch2 ALU X X | PC:=A+4 ALU0
fetch2 ALUI X X | PC:=A+4 ALUI0
fetch2 LW X X | PC:=A+4 LW0
….

ALU0 X X X | A:=Reg[rs1] ALU1
ALU1 X X X | B:=Reg[rs2] ALU2
ALU2 X X X | Reg[rd]:=ALUOp(A,B) fetch0

Peking University

Back Into History

IBM 360

Punched Card
with metal film

Fixed
sensing
plates

Peking University

IBM 360

• Only the fastest models (75 and 95) were hardwired

M30 M40 M50 M65
Datapath width (bits) 8 16 32 64

µinst width (bits) 50 52 85 87

µcode size (K µinsts) 4 4 2.75 2.75

µstore cycle (ns) 750 625 500 200

memory cycle (ns) 1500 2500 2000 750

Rental fee ($K/month) 4 7 15 35

ISA Compatible Computers

Assembly Language
Snap Tutorial

Peking University

Registers

Temporaries

Peking University

Basic (Integer) Commends

sub a0, zero, a1

Translate: a0 = 0 – a1

Peking University

Floating-Point Assembly

RISC-V supports floating-point

In fact, RISC-V has many
modules:

Peking University

Branching

Peking University

Example: Use the Stack

sp is a special register that is a stack

Statck: last in first out (LIFO)

Peking University

C Function

Peking University

Good News is …

• We have compiler that can convert C code into assembly

• 䯌䋧RISC-V籁陎朅㗟┚鲡车朅㗟 - 湳╲ (zhihu.com)

• riscv-collab/riscv-gnu-toolchain: GNU toolchain for RISC-V,
including GCC (github.com)

https://zhuanlan.zhihu.com/p/259305354
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain

Peking University

Hardware Code Examples

• Counter
• Finite State Machine
• Memory
• https://bonany.gitlab.io/pis/

• Arithmetic Logic Units

34

https://bonany.gitlab.io/pis/

