5@\1) } \E

: 0 at J’ :

N: 57y =
75989

PEKING UNIVERSITY

22530007
AT S B
3-#iCPU
JRE 15 Pl

2023%k

Instruction Set Architecture (ISA)

 The contract between software and hardware

 Typically described by giving all the programmer-visible state (registers + memory)
plus the semantics of the instructions that operate on that state

« IBM 360 was first line of machines to separate ISA from implementation (aka.
microarchitecture)

« Many implementations possible for a given ISA
« E.g., Soviets built code-compatible clones of the IBM360, as did Amdahl after he left IBM
« E.g.2.,AMD, Intel, VIA processors run the AMD64 ISA

« E.g.3: many cellphones use the ARM ISA with implementations from many different companies
including Apple, Qualcomm, Samsung, Huawei, etc.

« We use ARM/RISC-V as standard ISA in class (www.riscv.org)
« Many companies and open-source projects build RISC-V implementations

Peking University

ISA to Microarchitecture Mapping

« ISA often designed with particular microarchitectural style in mind,
e.g.,
Accumulator/Adder = hardwired, unpipelined
CISC (Complex instruction set computer) = microcoded
RISC (Reduced instruction set computer) = microcoded, pipelined
VLIW (Very long instruction word) = fixed-latency in-order parallel pipelines
JVM (Java virtual machine) — software interpretation
« But can be implemented with any microarchitectural style

— Intel vy Bridge: hardwired pipelined CISC (x86) machine (with some microcode
support)

- Apple M1/M2 (native ARM ISA, emulates x86 in software)
— ARM Jazelle: A hardware JVM processor

Peking University

Control versus Datapath

 Processor designs can be split between

« datapath, where numbers are stored and arithmetic operations
computed, and

« control, which sequences operations on datapath

A computer is just a big fancy
state machine.

Peking University

John von Neumann

* In the old days, “programming” involved actually changing a machine’s
physical configuration by flipping switches or connecting wires.
» A computer could run just one program at a time.
* Memory only stored data that was being operated on.

* Then around 1944, John von Neumann and others got the idea to encode
instructions in a format that could be stored in memory just like data.
* The processor interprets and executes instructions from memory.

* One machine could perform many different tasks, just by loading different
programs into memory.

« The“stored program” design is often called a Von Neumann machine.

Peking University

Memories

« Harvard architecture:
« programs and data stored in separate memories.

« Blue lines represent control signals. MemRead

and MemWrite should be set to 1 if the data
memory is to be read or written respectively,
and 0 otherwise.

« When a control signal does something when it
is setto 1, we call it active high(vs. active low)
because 1 is usually a higher voltage than 0.

 Pretendit’ s already loaded with a program,
which doesn’ tchange whileit’ srunning.

Peking University

Mem Write

32D ——p

32b —

Read

address data

Write
data Data

memory

—> 32b

Mem Read

32b —p

Instruction
[31-0]
address

Instruction
memory

— > 32b

Instruction Fetching

e The CPU isin a infinite loop

* The program counter or PC register holds the address of the
current instruction

* Given our instruction is 4 byte (32b) long
 >>PC=PC+ 4 after obtaining an instruction

Peking University

C

I7

4

&/

Read Instruction
address [31-0]

Instruction
memory

TN

Encoding R-type instructions

 Register-to-register arithmetic instructions use the R-type

format.

 op is the instruction opcode, and func specifies a particular

arithmetic operation
- rs, rt and rd are source and destination registers.

« Example

Now pretend you know assembly!

op rs rt rd shamt func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
000000 | 01001 | 01010 | 10100 1000000

add Ss4, St1, St2

Peking University

Register File & ALU

* R-type instructions must access registers and an ALU

* Qur register file stores thirty-two 32-bit values.
* Each register specifier is 5 bits long.
* You can read from two registers at a time (2 ports).
* RegWrite is 1 if a register should be written.

* Here’s a simple ALU with five operations, selected by a 3-bit
control signal ALUOp.

ALUOp Function
000 and
001 or
010 add
110 subtract
111 slt

Peking University

RegWrite
Read Read |m—p
register 1 data 1
Read
register 2 Read |emp
] data 2
Write
register
Registers
Write 9
data

> ALU

ALUOp

Executing an R-type instruction

1 RegWrite
| 32
Read Instruction I [25 - 21] Read Read // ALU
address [31-0] register 1 data 1 Zer0
1[20-16] | Read >
Instruction register 2 Read :/))2 Result
memory |15 - 11] Write data 2 7
register
_ Registers ALUGp
Write
r data
op rs rt rd shamt func
31 26 25 21 20 16 15 11 10 6 5

Peking University

Fetch an instruction from
“instruction memory”

Fetch data from registers rs &
rt

ALU does computation

Put results into rd

Encoding I-type instructions

- Immediate number instructions (I-type)
« Rtis the destination for lw, but a source for beq and sw
« Address is a 16-bit signed constant

immediate | rsl funct3 | rd opcode
12 bits 5bits | 3bits [5bits | 7 bits
« Example
1d x9, 64 (x22) // Temporary reg x9 gets A[8]
31 20 19 15 14 12 11 76
imm|11:0] rsl funct3 rd opcode
12 5 3 5 7
offset[11:0] base width dest LOAD

Peking University

Accessing Data Memory

Peking University

MemWrite

|

|

v

Read
data

address

Data
memory

Write
data

MemToReg

MemRead

o Xe=s -~

1 RegWrite
Read Instruction 1[25-21] [Read |
address [31-0] [® > nea Read)
register 1 data 1 ALU
[[20 - 16]
Instruction ® I v Re?dt 5 Read 0 > zero
memory 0 register —— Result
) data 2 M
M Write
u register :
| [15 - 11] X Write Registers] ALUOp
® > 1 data
RegDst ALUSrc
[[15-0] _[Sign
”\extend
1d x9, 64(x22) // Temporary reg x9 gets A[8]

Data memory Address: (the content in x22)+64
Operation: load the data in the “data memory” into x9

Branches

* For branch instructions, next PC should be obtained in the

fat, $0, L
add $v1, $vO, $0
add $v1, $vi, $vi
j Somewhere

L: add $v1, $vO, $vO

31 30 2524 2019 15 14 12 11 8 7 6
imm([12] | imm][10:5] rs2 rsl funct3 imm(4:1] | imm][11] opcode
1 6 5 5 4 1 7
offset[12]10:5] src2 srcl NE Gﬁset 11]4: IP BRANCH
offset[12]10:5] src2 srcl BLT[U] offset[11]4:1] BRANCH
offset[12[10:5] src2 srcl BGEIU] offset[11|4:1] BRANCH

BEQ: if rs1==rs2, then to go to the current PC+offset

Peking University

So Execute BEQ should be:

1. Fetch the instruction, like beq Sat, SO, offset, from memory.
2. Compare Sat and SO

3. If yes, next PC = PC + offset * 4 byte/instruction

Peking University

Hardware

Peking University

PC

Read
address

Instruction
[31-0]

Instruction
memory

MemWrite MemToReg
> Zero address data M
RESUIt |\ VWrite u
address X
0
» Write mE:]tg
ALUOp data ry
MemRead

Add
4
RegWrite
I [25 - 21 \
—@ [] » Read Read ‘
register 1 data 1 >
1[20-16
® [] » Read
0 register 2 Read |j@uump| 0
. data 2 M
M Write
u register)l:
I15-11]| * Write | Redisters 1
1 data
RegDst ALUSrc
1[15-0] Sign
» extend

Hardware

Peking University

We need a second adder, since the ALU
is already doing subtraction for the beq.

v

PC 4 .
Multiply constant
by 4 to get offset.
RegWrite
|
Read Instruction 1[25-21]
address [31-0] [® » Read Read
register 1 data 1
1120 - 16]
Instruction ® Fee?scjter 5 Read
memory X data 2
Write
register
1115 - 11] Write Registers
® ’ data
RegDst
1[15-0] Sign
7\extend

= PCSrc=1 branches
to PC+4+(offsetx4).
= PCSrc=0 continues

to PC+4.
MemWrite MemToReg
rk » Read Read > 1
> Zero address data M
0 RESUIt g Write u
M address x
u 0
X » Write mgrantg
1 ALUOPp data v
ALUSrc MemRead

Final Hardware

Peking University

PC

Instruction
[31-0]

Read
address

Instruction
memory

v

gyl

RegWrite
I[25 - 21 |
PN [] »| Read Read
register 1 data 1
I[20 - 16
[[] Read
register 2 Read
. data 2
Write
register
Write Registers
data
RegDst
1[15- 0] Sign
"\extend

- Xec=s o

ALUSrc

0
M
> u
X
Add 1
PCSrc
MemMWrite MemToReg
k Read Read > 1
> Zero address data M
RESUIt | Write U |
address X
0
Write mE:]t:
ALUOp data vy
|
MemRead

Review A Little Bit

Review: RV32I Processor State

Program counter (pc)

32x32-bit integer registers (x0-x31)
* X0 always containsa 0

32 floating-point (FP) registers (f0-f31)
 each can contain a single- or double-
precision FP value (32-bit or 64-bit IEEE
FP)

FP status register (fcsr), used for FP
rounding mode & exception reporting

Peking University

XLEN-1 0 FLEN-1 0
x0 / zero f0
x1 f1
x2 f2
x3 £3
x4 fa
x5 5
x6 f6
x7 £7
x8 8
x9 f9

x10 £10
x11 f11
x12 f12
x13 f13
x14 f14
x15 f15
x16 f16
x17 £17
x18 f18
x19 £19
x20 £20
x21 f21
x22 £22
x23 £23
x24 £24
x25 £25
x26 £26
x27 £27
x28 £28
x29 £29
x30 £30
x31 £31
XLEN FLEN

XLEN-1 0 31 0

pc fcsr
XLEN 32

RISC-V Instruction Encoding

XXXXXXXXXXXXXXXX

XAXXXXXXXXXXXXaa

Xxxxxxxxxxxxbbbilil

+ XXXX

XXXXXXXXAXXAXXXXXX

xxxxxxxxxx011111

+ ~XXXX

AXXXXXXXAXXAXXXXX

xxxxxxxxx0111111

¢ XXXX

AXXXXXXXXXAXXXXX

xnnnxxxxx1111111

¢ XXXX

AXXXXXXXXXAXXXXXX

x11lxxxxx1111111

Byte Address: base+4

base+2

base

« Can support variable-length instructions.
 Base instruction set (RV32) always has fixed 32-bit instructions lowest two bits =

11,

16-bit (aa # 11)

32-bit (bbb # 111)

48-bit

64-bit

(80+16*nnn)-bit, nnn#111

Reserved for >192-bits

« All branches and jumps have targets at 16-bit granularity (even in base ISA where
all instructions are fixed 32 bits)

Peking University

20

RISC-V Instruction Formats

7-bit opcode
opcode Reg. bits =11,)
bits/immediate
j Reg. Source 1
31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct? rs2 rsl funct3 rd opcode | R-type
imm|[11:0] rsl funct3 rd opcode | I-type
imm|[11:5] rs2 rsl funct3 imm|[4:0] opcode | S-type
imm(12] | imm[10:5] rs2 rsl funct3 |imm|4:1] | imm[11] | opcode | B-type
imm|31:12] rd opcode | U-type
imm|[20)] imm|[10:1] imm|[11] imm[19:12] rd opcode | J-type

Peking University

Single-Bus Datapath for Microcoded RISC-V

Opcode _ Condition? Busy?
—~_ 20 =
00T N
— = - E
218 a9 & 8| 208
= g RegSe Q\i 5 2 S U
V| T Address o v
< I} \K
b.b 2 (Y2 N\ &
gl 12| []B]]]l d=r ¢
[| © i
| S"% =9 a >3 - A3L Main
2l el |5 3 < :[1 Memory
SIIEN | & 5 £
e Q
z £ o ~ / %
£ L Data Out In AN - | .
I —
<
ImmEngi RegEn§§; T ALUE#{ I\/IemEnéi

Microinstructions written as register transfers:
MA:=PC means RegSel=PC; RegW=0; RegEn=1; MALd=1
B:=Reg[rs2] means RegSel=rs2; RegW=0; RegEn=1; BLd=1

Reg[rd]:=A+B means ALUop=Add; ALUEn=1; RegSel=rd; RegW=1
Peking University

Inside Instruction Memory

Address | Data

uPC Opcode Cond? Busy? | Control Lines Next uPC
fetch0 X X X | MA,A:=PC fetchl
fetchl X X 1 | fetchl
fetchl X X 0 | IR:=Mem fetch2
fetch2 ALU X X | PC:=A+4 ALUO
fetch2 ALUI X X | PC:=A+4 ALUIO
fetch2 LW X X | PC:=A+4 LWO
ALUO X X X | A:=Reg[rs1] ALU1
ALU1 X X X | B:=Reg|[rs2] ALU2
ALU2 X X X | Reg[rd]:=ALUOp(A,B) fetchO

Peking University

Back Into History

IBM 360

/
- Fixed

/ .
/sensing

olates

Peking University

IBM 360

Peking University

ISA Compatible Computers

M30 M40 M50 M65
Datapath width (bits) 8 16 32 64
uinst width (bits) 50 52 85 87
pucode size (K pinsts) 4 4 2.75 2.75
ustore cycle (ns) 750 625 500 200
memory cycle (ns) 1500 2500 2000 750
Rental fee (SK/month) 4 7 15 35

* Only the fastest models (75 and 95) were hardwired

Assembly Language
Snap Tutorial

Registers

Register | ABI Name | Description Saver
x0 zero Hard-wired zero

xi ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer

x4 tp Thread pointer

x5 t0 - inlregister | Caller
x6-7 ti-2 Caller
x8 s0/fp Saved register/frame pointer Callee
x9 si Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller
x18-27 | s2-11 Saved registers Callee
x28-31 | t3-6 Caller
f0-7 ft0-7 FP temporaries

£8-9 fs0-1 FP saved registers ‘allee
f10-11 | fa0-1 FP arguments/return values Caller
£12-17 | fa2-7 FP arguments Caller
£18-27 | fs2-11

£28-31 | ft8-11

Peking University

FP saved registers Callee
FP temporares _

Temporaries

Basic (Integer) Commends

Instruction . us :
Example Description Performs logical AND on operands t3
P and a3, t3, s3 and s3 and stores the result into
Loads (dereferences) from memory e —_—
address (sp + 8) into register tO. g :
1b t0, 8 (sp) 1b = load byte, 1lh = load halfword, -
1w = load word, 1d = load Performs logical OR on operands t3
doubleword. or a3, t3, s3 and s3 and stores the result into
the register a3.
Stores (dereferences) from register
EY niEe meneEy SelEess (&9 o Glc &b Performs logical XOR on operands t3
sb t0, 8(sp) = store byte, sh = store halfword, ;
sw = store word. sd = store xor a3, t3, s3 and s3 and stores the result into
Sl llarioral the register a3.

Adds value of t0 to the wvalue of tl

add a0, t0, tl and stores the sum into aO.

Adds value of t0 to the wvalue -10
and stores the sum into aO.

Subtracts value of tl from value of SUb a@, Zer‘O, al

t0 and stores the difference in a0.

addi a0, tO0, -10

sub a0, tO, tl

Multiplies the value of tO to the
mul a0, t0O, til value of tl1 and stores the product Tr\anSlate. a@ = @ - al

in ao0.

Dividies the wvalue of t3
(denominator) from the value of s3
(numerator) and stores the quotient
into the register al.

div al, s3, t3

Divides the wvalue of t3
(denominator) from the value of s3
(numerator) and stores the remainder
into the register al.

rem al, s3, t3

Peking University

Floating-Point Assembly

Load a double-precision value

flw fto, 0(sp)

ft@ now contains whatever we loaded from memory + ©
flw ft1l, 4(sp)

ftl now contains whatever we loaded from memory + 4
fadd.s ft2, fte, ftl
ft2 is now fto + ftl

RISC-V supports floating-point

Peking University

In fact, RISC-V has many

modules:

Base Version | Status
RVWMO | 2.0 Ratified
RV 321 2.1 Ratified
RV64I1 2.1 Ratified
RV32E | 1.9 Draft
RV128I | 1.7 Draft
Extension | Version | Status
M 2.0 Ratified
2.1 Ratified
@ 2.2 Ratified
2.2 Ratified
Q 2.2 Ratified
C 2.0 Ratified
Counters | 2.0 Draft
L 0.0 Draft
B 0.0 Draft
J 0.0 Draft
T 0.0 Draft
P 0.2 Draft
% 0.7 Draft
Zicsr 2.0 Ratified
Zifencei | 2.0 Ratified
Zam 0.1 Draft
Ztso 0.1 Frozen

Branching

for (int i = 0;1 < 10;i++) {

Peking University

// Repeated code goes here.

9

10
loop head:
bge to, t2, loop end
Repeated code goes here
addi to, to, 1

J loop head

loop end:

Example: Use the Stack

sp is a special register that is a stack

Statck: last in first out (LIFO)

Peking University

C Function

Peking University

void my function();

my_function:

Prologue

addi
sd
sd
sd
sd

SP,
ra,
a0,
s9,
il

Epilogue
1d
1d
1d
1d

ra,
a0,
so,
Sl
SP,

Good News i1s

« We have compiler that can convert C code into assembly

» BERISC-VRIRIFE SIEITIAE - F1F (zhihu.com)

e riscv-collab/riscv-gnu-toolchain: GNU toolchain for RISC-V,

including GCC (github.com)

Peking University

https://zhuanlan.zhihu.com/p/259305354
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain

Hardware Code Examples

e Counter
 Finite State Machine
 Memory

* Arithmetic Logic Units

Peking University

34

https://bonany.gitlab.io/pis/

