
AI ASIC: Design and Practice

(ADaP)

Fall 2024

HDL Simulators & Logic Synthesis

燕博南

Outline

• Verilog HDL Simulators

• Logic Synthesis - A instrumentalism Perspective
• How to synthesis RTL code to logic gates?

RTL: Register Transfer Level

Part 1
Open-source simulators for HDL

Verilog Simulator Workflow

iverilog vvp gtkwave

testbench.v
design.v

wave wave.vcd

Runnable commend lines:

executable file result file

Verilog Simulator Workflow

iverilog

gtkwaveRunnable command lines:

testbench.v

`include “design.v”
Module testbench;

…

design u1 (…);

endmodule

plot.tcl

No need to drag
outputs every
time after
running

A good tutorial:
全平台轻量开源verilog仿真工具iverilog+GTKWave使用教程

https://zhuanlan.zhihu.com/p/95081329

Other simulators

• Verilator

• PyRTL

• VCS

• Incisive

• Modelsim

• …

What are their differences?

Part 2
Logic Synthesis

Why synthesis

• Definition: Synthesize logic circuits into gates (gate-level netlist)

• Quick (re)design time

• Separate functionality, technology-dependent parameters, and design

constraints

• Fast timing/area/power estimates

Why “synthesis” works? Why can we synthesize logic?

How to do logic synthesis?

Architectural
Mapping

Logic
Optimization

RTL (.v)

Synthesis commands (.tcl)

Designware Lib

Technology Lib

Gate-level netlist (.vg)

Database of adders,
Multipliers, shifters,
…

e.g. Mux or AND+OR+INV

Gate sizing,
Logic transformation,
…

Outputs of logic synthesis?

• Timing/Area/Power reports
• Gate-level netlist (.vg) & timing info. In standard delay format (.sdf) for timing-aware simulation

• Pre-syn (RTL) sim needs: testbench.v, design.v
• Post-syn sim needs: testbench.v, design.vg, design.sdf, stdlib_cells.v

e.g. Assign C=A+B

RTL sim Post-syn sim

A

B

C

100 101

001011

110111 C

A

B

100 101

001011

110111

Glitch & Delay

Synthesis Tool: Synopsys Design Compiler

• dc_shell-t or dc_shell-xg-t

• Command line approach (no gui)

• Other synthesis tools also work fine:
• Cadence Genus

• Open Road: yosys

Script Example (.tcl file)

1. Setup technology library

2. Read RTL deign & do architecture mapping

3. Add constraints

4. Compile design

5. Get reports

Logic Synthesis

1. RTL coding

2. Technology lib setup

3. Constraints

4. Major synthesis commands

5. Gate-level simulation

Logic Synthesis

1. RTL coding

2. Technology lib setup

3. Constraints

4. Major synthesis commands

5. Gate-level simulation

Write Good HDL

• Different coding styles that are functionally eqvl. may be mapped into HWs having
different timing/area

E=A+B+C+D E=(A+B)+(C+D)

+ + +A

B C D

E +

+

+

A

B

C

D

E

Which is better?

Logic Synthesis

1. RTL coding

2. Technology lib setup

3. Constraints

4. Major synthesis commands

5. Gate-level simulation

Technology Lib is about:

• Process

• Operating Condition (ss/tt/ff design corner, temperature, VDD voltage)

• Cell Name

• Area

• Functionality

• Pin Capacitance

• Leakage Power

• Look-up Tables (LUT) for Dynamic Power & Propagation Delay of all i/o Paths

• (idx1: input transition time; idx2: o/p capacitance)

• …

Setup Tech Lib

• DC follows search_path to find libraries you specify

• DC uses cells in target library for logic optimization (so we need to do

set_target_library first)

• Remember: Use backslash \ before changing lines to avoid compilation errors.

Logic Synthesis

1. RTL coding

2. Technology lib setup

3. Constraints

4. Major synthesis commands

5. Gate-level simulation

Synthesis is Constraint-driven

• You set the goals (through design constraints)

• DC optimizes the design to meet your goals

Find sweet point
that fits on your chip

Timing Analysis for VLSI

FF

CLK

FF

CLK

Combinational
Logic

Combinational
Logic

Combinational
Logic

X Y

Path 1

Path 2
Path 3

Input delay: Arrival of an external path w.r.t. the clock edge
Output delay: timing from an output port of the current design to a register input
port of other modules

“create_clock”: affects internal logic

“set_input_delay” : affects input logic

“set_output_delay”: affects output logic

Describe Constraints

• Clocks

• Period, latency, uncertainty

• Design rules

• Maximum transition

• Maximum capacitance

• Maximum fanout

• Input-related

• Driving cells, Input delay

• Output-related

• Load, Output delay

• Exception paths

• False paths, multi-cycle paths

• Optimization goal

• Maximum area/power

Accurate constraints
(not too tight/loose):
Good integ. results

Clock Description

• create_clock: define clock’s waveform (e.g. period)

create_clock –name “sysclk” –period 2.0 [get_ports “CLK”]

• set_fix_hold: respect the hold time requirement of all clocked flip-flops

set_fix_hold sysclk

• set_dont_touch_network: do not buffer clock network

set_dont_touch_network [get_clocks “sysclk”]

• Specify uncertainty (skew + jitter) of clock network

set_clock_uncertainty 0.1 [get_clocks “sysclk”]

• Sets the max_transition attribute to a specified value on specified clocks group, ports or designs

set_max_transition 0.1 current_design

Constraints: Max transitions, fanout & output loads

• Sets the max_transition, fanout load & output load attribute :

set_max_transition 0.1 current_design

set_max_fanout 1.0 current_design

set_load 1.0 [all_outputs]

Constraints: Driving Cells

• Sets attributes on input or inout ports of the current design, specifying that a library cell or output

pin of a library cell drives specified ports:

set_driving_cell [-library lib] [-lib_cell lib_cell_name] [-pin pin_name]

set ALL_IN_BUT_CLK [remove_from_collection [all_inputs] “CLK"]

set_driving_cell -no_design_rule –library \
 saed32rvt_ss0p95v125c.db:saed32rvt_ss0p95v125c -lib_cell \
 DFFASRX2_RVT -pin Q $ALL_IN_BUT_CLK

Constraints: False Paths

• Removes timing constraints from particular paths, but still needs to satisfy design rule (transition,

capacitance, fanout):

set_false_path –from [from_list]

set_false_path -from [get_ports “TEST_OUT1”]

Constraints: Maximum Area/Power

• Optimization goals for your design (DC will do it best to satisfy them, w/o violating the three design

rules):

set_max_area 0.0

set_max_total_power 0.0

set_max_area 10000

set_max_total_power 100

uW

um2

desired power

desired area

Constraints: Operating Condition

• Defines the operating conditions for the current design:

set_operating_conditions [-min min_condition] [-max max_condition]

set_operating_conditions -min ff1p16vn40c -max ss0p95v125c

Setup time check condition
hold time check condition

Constraints: Wire-load Models and Modes

• Specify a selection group to use for determining a wire load model to be assigned to designs and

cells or to a specified cluster:

set_wire_load_selection_group group_name [-max] [-min]

set_wire_load_selection_group group_name “predcaps”

DC will select proper model based on synthesis
area (again, lookup this name in .lib file)

Logic Synthesis

1. RTL coding

2. Technology lib setup

3. Constraints

4. Major synthesis commands

5. Gate-level simulation

Commands Preview

• Not all commands introduced are necessarily needed

• Things MUST do

Analyze, elaborate, and link design

Compile design

• Things can do based on your needs

Ungroup; Uniquify

Clock gating creation

Remove unconnected ports

Suggestion: Learn by playing w/ different commands and observing the differences

Analyze Designs:

• Analyzes the HDL files and stores the intermediate format in the specified library.

analyze [-format vhdl | verilog | sverilog] file_list

analyze –format Verilog {adder.v}

elaborate

read_verilog adder.v

Or

Elabrate & Link Designs

• Builds a design from the intermediate format of a Verilog module, a VHDL entity and
architecture, or a VHDL configuration:

set design_name adder

elaborate $design_name

or

link

Ungroup & Uniquify

• Removes a level of hierarchy:

ungroup cell_list | -all [-flatten]

ungroup –flatten -all

• Removes multiple-instantiated hierarchy in the current design by
creating a unique design for each of the cell instances:

uniquify

Compile

• Performs logic-level and gate-level synthesis and optimization on the current design:

compile [-no_design_rule | -only_design_rule | -only_hold_time] [-
map_effort medium | high] [-boundary_optimization]

compile –map_effort high

compile_ultra

Remove Unconnected Ports

• Removes unconnected ports or pins from cells, references, and sub-designs

remove_unconnected_ports -blast_buses [get_cells -hier]

Report Designs

report_timing -path full -delay min -max_paths 10 -nworst 2 > Design.holdtiming

report_timing -path full -delay max -max_paths 10 -nworst 2 > Design.setuptiming

report_area -hierarchy > Design.area

report_power -hier -hier_level 2 > Design.power

report_resources > Design.resources

report_constraint -verbose > Design.constraint

check_design > Design.check_design

check_timing > Design.check_timing

Logic Synthesis

1. RTL coding

2. Technology lib setup

3. Constraints

4. Major synthesis commands

5. Gate-level simulation

Slight Modification of Original Testbench.v

• RTL simulation: design.v + testbench.v

• Gate-level simulation:

• design.vg

• design.sdf (from DC)

• testbench.v (w/ slight modification)

`include “design.v”
Module Testbench;

….

Design u1 (…);

…

endmodule

`include “design.vg”
`include “stdlib_cells.v”
Module Testbench;
….

initial $sdf_annotate(“design.sdf”, u2);

Design u2 (…);

…

endmodule

DC Help

• If you meet any questions about some commands

• Use

man set_input_delay

• Or

• Search on Baidu/Bing/Google/…

Summary

• Synthesis tool makes VLSI design a lot easier

• Easy to use: .v files + .tcl files

• Easy to switch designs to any technology by changing associated libraries

• Easy to have accurate area/timing/power estimate

• Easy to match the best archit. with design constraints

• But… not a substitute for thinking

• Mind your coding styles

• Handmade optimization (e.g. using shift-and-add for variables’ multiplication) still
needed

	Slide 1: AI ASIC: Design and Practice (ADaP) Fall 2024 HDL Simulators & Logic Synthesis
	Slide 2: Outline
	Slide 3: Part 1
	Slide 4: Verilog Simulator Workflow
	Slide 5: Verilog Simulator Workflow
	Slide 6: Other simulators
	Slide 7: Part 2
	Slide 8: Why synthesis
	Slide 9: How to do logic synthesis?
	Slide 10: Outputs of logic synthesis?
	Slide 11: Synthesis Tool: Synopsys Design Compiler
	Slide 12: Script Example (.tcl file)
	Slide 13: Logic Synthesis
	Slide 14: Logic Synthesis
	Slide 15: Write Good HDL
	Slide 16: Logic Synthesis
	Slide 17: Technology Lib is about:
	Slide 18: Setup Tech Lib
	Slide 19: Logic Synthesis
	Slide 20: Synthesis is Constraint-driven
	Slide 21: Timing Analysis for VLSI
	Slide 22: Describe Constraints
	Slide 23: Clock Description
	Slide 24: Constraints: Max transitions, fanout & output loads
	Slide 25: Constraints: Driving Cells
	Slide 26: Constraints: False Paths
	Slide 27: Constraints: Maximum Area/Power
	Slide 28: Constraints: Operating Condition
	Slide 29: Constraints: Wire-load Models and Modes
	Slide 30: Logic Synthesis
	Slide 31: Commands Preview
	Slide 32: Analyze Designs:
	Slide 33: Elabrate & Link Designs
	Slide 34: Ungroup & Uniquify
	Slide 35: Compile
	Slide 36: Remove Unconnected Ports
	Slide 37: Report Designs
	Slide 38: Logic Synthesis
	Slide 39: Slight Modification of Original Testbench.v
	Slide 40: DC Help
	Slide 41: Summary

