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Outline

• Memory Types

• Memory Organization

• ROM design

• RAM design
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Memory Spatial Abstraction 

M bits

A 0

A 1

A K2 1

K 5 log2N

Word 0

Word 1

Word 2

Word N2 2

Word N2 1

Storage
cell

S0

Intuitive architecture for N x M memory

Too many select signals:

N words == N select signals
K = log

2
N

Decoder reduces the number of select signals

Word 0

Word 1

Word 2

Word N2 2

Word N2 1

Storage
cell

M bits

N

words

S0

S1

S2

SN2 2

SN2 1

Input-Output
(M bits)

Input-Output
(M bits)

D
e
c
o
d
er



Memory Timing Behavior



Memory Timing Behavior



Memory Timing Behavior / Compute-In-Memory

• Add additional (compute mode) inputs
• Perhaps additional address bits



Memory Architecture

Amplify swing to
rail-to-rail amplitude

Selects appropriate
word

Jain, Pulkit, et al. "13.2 A 3.6 Mb 10.1 Mb/mm 2 embedded non-volatile ReRAM 

macro in 22nm FinFET technology with adaptive forming/set/reset schemes yielding 

down to 0.5 V with sensing time of 5ns at 0.7 V." 2019 IEEE International Solid-State 

Circuits Conference-(ISSCC). IEEE, 2019.

How it can achieve large capacity?



Memory Address
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Each memory I/O bit width is 128bit

For 1Mb memory, what is the range of memory 
address?

1Mb/128b 
= (220 bit)/(27 bit)
= 213

13-wire address is necessary



Memory Architecture (inside a memory block)

Assume 1Mb is one subarray

Configuration:
• Memory I/O bit width is 128b
• 1Mb/subarray
• Address width: 13b

How get 4Mb memory?
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Hierarchical Memory Architecture

Advantages:

1. Shorter wires within blocks
2. Block address activates only 1 block => power savings



Various Memories

• Read-Only-Memory (ROM)

• Random-Access-Memory (RAM) : Read/Write Memory

• SRAM

• DRAM

Before we introduce them, think first: what are good memories?

Density, R/W Speed, Endurance, Retention, Nonvolatility, …



Various Memories

• Read-Only-Memory (ROM)

• Random-Access-Memory (RAM) : Read/Write Memory

• SRAM

• DRAM
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MOS ROM
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MOS ROM Example

• 4-word x 6-bit ROM

– Represented with dot diagram

– Dots indicate 1’s in ROM

Word 0: 010101

Word 1: 011001

Word 2: 100101

Word 3: 101010

ROM Array
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pullups

Looks like 6 4-input pseudo-nMOS NORs



Layout

Programmming using the

Active Layer Only

Polysilicon

Metal1

Diffusion

Metal1 on Diffusion

Cell (19f x 14f)



Layout

Programmming using the

Active Layer Only

Polysilicon
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Diffusion
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Cell (19f x 14f) f: feature size

Q: Can this array 
expand to infinite size?
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Decreasing Word Line Delay

Metal bypass
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Various Memories

• Read-Only-Memory (ROM)

• Random-Access-Memory (RAM) : Read/Write Memory

• SRAM

• DRAM



RAM Types

❑ STATIC (SRAM)

❑ DYNAMIC (DRAM)

Data stored as long as supply is applied

Large (6 transistors/cell)

Fast

Differential

Periodic refresh required

Small (1-3 transistors/cell)

Slower

Single Ended



RAM Types

❑ STATIC (SRAM)

❑ DYNAMIC (DRAM)

Data stored as long as supply is applied

Large (6 transistors/cell)

Fast

Differential

Periodic refresh required

Small (1-3 transistors/cell)

Slower

Single Ended



SRAM 6T Cell
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SRAM Scaling

SRAM is the first component for foundry to develop



SRAM Bitcell Array

Read Operation: 
on

Timing:



8T SRAM

• Advantage: reduce read disturbance
• Disadvantage: Too large
• Read disturbance:

• Unexpectedly change bitcell data when read



RAM Types
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DRAM Cell 3T

No constraints on device ratios

Reads are non-destructive

Value stored at node X when writing a “1” = VWWL-VTn
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1T DRAM Cell

Write: CS is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

V
BL VPRE– VBIT VPRE–

CS

CS CBL+
------------= =V



1T DRAM Cell

• Often offer 10~20 times higher density than SRAM
• Trench capacitor 

is often in specialized process



Better Density – 3D Integration

Lee, Dong Uk, et al. "22.3 A 128Gb 8-high 512GB/s HBM2E DRAM with a pseudo quarter bank structure, power dispersion and an instruction-based 
at-speed PMBIST." 2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 2020.



DRAM vs. eDRAM

• eDRAM: embedded DRAM

• DRAM special process (thick oxide/high threshold) is too slow 
as logic platform

• eDRAM process incorporates compact-size of capacitors to be 
compatible with processes for logic (regular threshold 
transistors)



A Practical DRAM Product

Source: Micron



Modern memories

CPUs can also use registers, caches and scratchpad memory



Register Files & Cache

Register file: an array of registers
Cache: “transparent memory” to avoid excessive access to DRAM

Registers and Caches are often made of SRAM

int a , b , c;
a = 1;
b = 2;
C = a + b;

compiler

where to store a, b and c?

• If registers are enough, they are all in registers
• If registers are not enough, they need to enter main 

memory (with an address)
• If “cache hit” happens, they will not go off-chip 

(large latency/low access bandwidth)

registers

cache

main 
memory



Register files

registers

cache

main 
memory

module picorv32_regs (
 input clk, wen,
 input [5:0] waddr,
 input [5:0] raddr1,
 input [5:0] raddr2,
 input [31:0] wdata,
 output [31:0] rdata1,
 output [31:0] rdata2
);
 reg [31:0] regs [0:30];

 always @(posedge clk)
  if (wen) regs[~waddr[4:0]] <= wdata;

 assign rdata1 = regs[~raddr1[4:0]];
 assign rdata2 = regs[~raddr2[4:0]];
endmodule

Source: picorv32 CPU

• Is this synthesizable? Yes!
• Do we use synthesis flow to 

generate memory? Yes!

• Sometimes we use this, often 
we use full-custom flow to 
design register files



Register files

Made from SRAM?
Requirement: Multiport Read/Write

Multiport SRAM cell

• How to use this cell to build large 
array of registers and even a register 
file?

• ww1, ww2, ww3 control need to be 
one-hot



Cache

CPU keeps asking if the data is in the cache:
• If yes, it is a cache hit
• If no, it is a cache miss



Direct Map

Tag: higher 2b address as the 
tag

To clarify whether the requested 
word in memory is in the cache 



Inside A Cache

Content-addressable memory (CAM) / associate memory



Direct-associativity & Set-associativity 

direct-associative n-way set-associative



Example of direct- and set-associativity

Set: increase the cache hit probability

Assumption/Logic behind:
Cache miss leads to very long time of 
data movement



Challenges for Cache Design

Definition: Scratchpad Memory is just embedded “memory”.

Embedded memory: memories that are on the chip, i.e. “integrated memory”.

• Complex mechanism

• Large area overhead

• Stochastic characteristics
• Cache miss penalty is too 

large!  

Banakar, Rajeshwari, et al. "Scratchpad memory: A design alternative for cache on-chip memory in embedded systems." Proceedings of the Tenth International Symposium on 

Hardware/Software Codesign. CODES 2002 (IEEE Cat. No. 02TH8627). IEEE, 2002.



Scratchpad Memory vs. Cache

Definition: Scratchpad Memory is just embedded “memory”.
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Review for Memory

• Memories
• Operations: Read, Write

• Basic circuits: bitcell array, column/row decoders, sense 
amplifiers (SA)

• Hierarchy:

• registers, cache, scratchpad memory, main memory

• Memory technologies:

• Transistor-based ROMs, SRAM, DRAM, eNVM (embedded 
nonvolatile memory)

• Other concepts: 

• cache miss, cache hit, address space
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