
AI ASIC: Design and Practice (ADaP)

Fall 2024

Latest Hardware Design Languages

燕博南

HDL History

Verilog originated at Automated Integrated
Design Systems (renamed Gateway) in
1985. Acquired by Cadence in 1989.

Invented as simulation language. Synthesis was an
afterthought. Many of the basic techniques for synthesis
were developed at Berkeley in the 80’s and applied
commercially in the 90’s.

Around the same time as the origin of Verilog, the US Department of Defense developed VHDL:
• A double acronym! VSIC (Very High-Speed Integrated Circuit) HDL
• Because it was in the public domain it began to grow in popularity.

HDL History

• Afraid of losing market share, Cadence opened Verilog to the
public in 1990.

• An IEEE working group was established in 1993, and ratified
IEEE Standard 1394 (Verilog) in 1995.

• Verilog is the language of choice of Silicon Valley companies,
initially because of high-quality tool support and its similarity to
C-language syntax.

• VHDL is still popular within the government, in Europe and
Japan, and some Universities.

HDL History

• Latest Verilog version is “System Verilog”
• In 1997, Superlog (derived from Super and Verilog), for system

specification, hardware design, hardware verification, and software
development.

• In 2002, Co-Design Automation donated the Superlog language to
Accellera, and the bulk of the verification functionality was based on
the OpenVera language, which was donated by Synopsys.

• In 2005, SystemVerilog was first adopted in IEEE standard.
• Other alternatives these days:

• Bluespec (MIT spin-out) models digital systems using “guarded atomic
actions”

• C-to-gates Compilers (ex: Cadence C-to-Silicon Compiler, Vivado HLS)

What are the problems with Verilog?

Hardware Construction Language
Part I

HDL is not enough - I

• Designed as a simulation language. “Discrete Event Semantics”
• Many constructs don’t synthesize: ex: deassign, timing constructs

• Others lead to mysterious results: for-loops

• Difficult to understand synthesis implications of procedural
assignment (always blocks), and blocking versus non-blocking
assignments

• In common use, most users ignore much of the language and stick to a
very strict “style”. Companies use rules and run lint style checkers.
Nonetheless leads to confusion (particularly for beginners), and bugs.

• Few meta-programming support
• Vs. embedded TCL scripting

• Chisel: Constructing Hardware in a Scala Embedded Language
• Powerful “metaprogramming” model for building circuit generators

• Why embedded?
• Avoid the hassle of writing and maintaining a new programming

language (most of the work would go into the non-hardware specific
parts of the language anyway)

• Why Scala?
• Brings together the best of many others: Java JVM, functional

programming, OO programming, strong typing, type inference

Chisel

Chisel Workflow

Scala Compiler generates an executable (Chisel program)
• Execution of the Chisel program:

• generates an internal data structure and output called FIRRTL
(flexible intermediate representation for RTL)

• FIRRTL “processor”:
• resolves wire widths
• checks connectivity
• generates target output (verilog for now)
• FIRRTL interpreter or verilator used for simulation

Scala
Compiler

Run
Chisel

Program

FIRRTL
Processor

FIRRTL
Interpreter

Verilog
Simulator

Verilog
Synthesizer

Module.scala
Module.fir

Module.v

C/Scala Based Tester

back-end
design

waveforms

Introduction to Chisel Language

• Simple Logic

• val out = (a & ~b) | (~a & b)

• Function Abstraction

• def XOR (a:Bits, b:Bits)=(a&~b)|(~a&b)

• val z =(x & XOR(x,y)) | (XOR(x,y) & y)

Datatypes in Chisel

• Chisel datatypes are used to specify the type of values held in state
elements or flowing on wires.

• All signed numbers represented as 2’s complement

Bits Raw collection of bits (parent type)

SInt Signed integer number

UInt Unsigned integer number

Bool Boolean

val out = (a & ~b) | (~a & b)

val out: UInt = (a & ~b) | (~a & b)

Bundles

class FIFOInput extends Bundle {

 val rdy = Output(Bool()) //Indicates if FIFO has space

 val data = Input(UInt(32.W)) //values to be enqueued

 val euq = Input(Bool()) //assert to enqueue data

}

Instantiation:

Val jonsIO = new FIFOInput

Literals

”ha”.U

”o12”.U

”b1010”.U

5.S

-8.S

5.U

true.B

false.B

”ha”.asUInt(8.W)

-5.asSInt(32.W)

Hexadecimal 4-bit literal of type Bits

Octal 4-bit literal of type Bits

Binary 4-bit literal of type Bits

Signed decimal 4-bit literal of type Fix

Negative decimal 4-bit literal of type Fix

Unsigned decimal 4-bit literal of type UFix

Literals for type Bool, from Scala Boolean literals

hexadecimal 8-bit literal of type Bits, 0-extended

32-bit decimal literal of type Fix, signed-extended

Built-in Operators

Modules

class Mux2 extends Module {
val io = IO(new Bundle{

val select = Input(UInt(1.W))
val in0 = Input(UInt(1.W))
val in1 = Input(UInt(1.W))
val out = Output(UInt(1.W))

})

io.out := (io.select & io.in1) |
 (~io.select & io.in0)

}

output

Example-FSM

class MyFSM extends Module {
val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())

})
val IDLE :: S0 :: S1 :: Nil = Enum(3)
val state = Reg(init = IDLE);
when (state === IDLE) {
 when (io.in) { state := S0 }
}
when (state === S0) {
 when (io.in) { state := S1 }
 .otherwise { state := IDLE }
}
when (state === S1) {
 when (!io.in) { state := IDLE }
}
io.out := state === S1;

}

IDLE
out=0

S0
out=0

S1
out=1

in=1

in=0

in=1

in=0

in=0

in=1

Reference for Chisel

Chisel3 homepage: https://www.chisel-lang.org
Chisel Doc
Chisel-Bootcamp
Chisel-Book Tutorial (中文版)
Chisel-Template

https://www.chisel-lang.org/
https://www.chisel-lang.org/chisel3/docs/introduction.html
https://mybinder.org/v2/gh/freechipsproject/chisel-bootcamp/master
http://www.imm.dtu.dk/~masca/chisel-book.html
http://www.imm.dtu.dk/~masca/chisel-book-chinese.pdf
https://github.com/freechipsproject/chisel-template

Chisel is still under development

• Debug is somewhat hard

• With automatically generated intermediate wires

• Still lack good back-annotation support

• Layout efforts are disturbing

• With automatically generated intermediate wires

• Parametrized front-end design does not propagate to back-end

High-Level Synthesis
Part II

HDL is not enough - II

• Software algorithms are
hard to be converted into
RTL

• There is no ”timing” in
algorithms

• Software don’t care wires
and registers

• Think about mapping a
CNN layer into Verilog

• Too complicated

High-Level Synthesis (HLS)

Coussy, Philippe, et al. "An introduction to high-level synthesis." IEEE Design & Test of Computers 26.4 (2009): 8-17.

Typical Hardware Architectures

Coussy, Philippe, et al. "An introduction to high-level synthesis." IEEE Design & Test of Computers 26.4 (2009): 8-17.

Typical HLS Compilers

LLVM Based Compiler Xilinx Intel FPGA

LLVM Based HLS

Write the C code and get it into the LLVM compiler

Intermediate Representation (IR)

LLVM Based HLS

Arithmetic tree height reduction

Binding can be
done by the users
or the compilers

Typical Flows/Tools of HLS

Xilinx HLS Flow: Intel HLS Flow:

Example of Revising C Code For HLS :: Add HLS Tags

template<typename T, int K>

 static void convolution_strm(

 int width,

 int height,

 hls::stream<T> &src,

 hls::stream<T> &dst,

 const T *hcoeff,

 const T *vcoeff)

{

 #pragma HLS DATAFLOW

 #pragma HLS ARRAY_PARTITION variable=linebuf dim=1 complete

 hls::stream<T> hconv("hconv");

 hls::stream<T> vconv("vconv");

 // These assertions let HLS know the upper bounds of loops

 assert(height < MAX_IMG_ROWS);

 assert(width < MAX_IMG_COLS);

assert(width < MAX_IMG_COLS);
 assert(vconv_xlim < MAX_IMG_COLS - (K - 1));
 // Horizontal convolution
 HConvH:for(int col = 0; col < height; col++) {
 HConvW:for(int row = 0; row < width; row++) {
 #pragma HLS PIPELINE
 HConv:for(int i = 0; i < K; i++) {
} }
 }
 // Vertical convolution
 VConvH:for(int col = 0; col < height; col++) {
 VConvW:for(int row = 0; row < vconv_xlim; row++)
{
 #pragma HLS PIPELINE
 #pragma HLS DEPENDENCE variable=linebuf inter false
 VConv:for(int i = 0; i < K; i++) {
 }
}
 Border:for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
 #pragma HLS PIPELINE

HLS is still under development

• Too many hidden techniques while use C++/SystemC

• ASIC HLS flow is harder than FPGA flow
• Why?

• Tools under development!

Future

• What is the best design flow you think?
• Integrate analog/digital

• Automatically tune parameters

• Readable (at least for LLM)

• …

	Slide 1: AI ASIC: Design and Practice (ADaP) Fall 2024 Latest Hardware Design Languages
	Slide 2: HDL History
	Slide 3: HDL History
	Slide 4: HDL History
	Slide 5: Hardware Construction Language
	Slide 6: HDL is not enough - I
	Slide 7: Chisel
	Slide 8: Chisel Workflow
	Slide 9: Introduction to Chisel Language
	Slide 10: Datatypes in Chisel
	Slide 11: Bundles
	Slide 12: Literals
	Slide 13: Built-in Operators
	Slide 14: Modules
	Slide 15: Example-FSM
	Slide 16: Reference for Chisel
	Slide 17: Chisel is still under development
	Slide 18: High-Level Synthesis
	Slide 19: HDL is not enough - II
	Slide 20: High-Level Synthesis (HLS)
	Slide 21: Typical Hardware Architectures
	Slide 22: Typical HLS Compilers
	Slide 23: LLVM Based HLS
	Slide 24: LLVM Based HLS
	Slide 25: Arithmetic tree height reduction
	Slide 26: Typical Flows/Tools of HLS
	Slide 27: Example of Revising C Code For HLS :: Add HLS Tags
	Slide 28: HLS is still under development
	Slide 29: Future

