L ONTY »

TR at < J’ 4

LA 57 F
l53% P G ITY

EKING UNIVERS

Al ASIC: Design and Practice (ADaP)
Fall 2024

Latest Hardware Design Languages

EEETE)

a‘”””e bl

R e 7 X 7

7N 2 5Ho9 =
l558 PEKING UNIVERSITY

" B HDL History

Invented as simulation language. Synthesis was an

\ID/erl!og grlgtlnated at Autodm(?tfd Integrated afterthought. Many of the basic techniques for synthesis
€sIgn Systems (rename a eway) in were developed at Berkeley in the 80's and applied
1985. Acquired by Cadence in 1989. commercially in the 90's

Around the same time as the origin of Verilog, the US Department of Defense developed VHDL:

« A double acronym! VSIC (Very High-Speed Integrated Circuit) HDL
« Because it was in the public domain it began to grow in popularity.

" B HDL History

» Afraid of losing market share, Cadence opened Verilog to the
public in 1990.

* An IEEE working group was established in 1993, and ratified
IEEE Standard 1394 (Verilog) in 1995.

* Verilog is the language of choice of Silicon Valley companies,
initially because of high-quality tool support and its similarity to
C-language syntax.

« VHDL is still popular within the government, in Europe and
Japan, and some Universities.

AR [Z }’)ﬁ
LA E 575
PR PEKING UNIVERSITY

" B HDL History

» | atest Verilog version is “System Verilog”

* In 1997, Superlog (derived from Super and Verilog), for system
specification, hardware design, hardware verification, and software

development.

 In 2002, Co-Design Automation donated the Su,perlo,lg language to
Accellera, and the bulk of the verification functionality was based on

the OpenVera language, which was donated by Synopsys.
 In 2005, SystemVerilog was first adopted in IEEE standard.

 Other alternatives these days:
 Bluespec (MIT spin-out) models digital systems using “guarded atomic

actions”
« C-to-gates Compilers (ex: Cadence C-to-Silicon Compiler, Vivado HLS)

What are the problems with Verilog?

Hardware Construction Language

I M HDL is not enough - | G5 de i xS

% PEKING UNIVERSITY

* Designed as a simulation language. “Discrete Event Semantics”
« Many constructs don't synthesize: ex: deassign, timing constructs
Others lead to mysterious results: for-loops

Difficult to understand synthesis implications of procedural
assignment (always blocks), and blocking versus non-blocking
assignments

In common use, most users ignore much of the language and stick to a
very strict “style”. Companies use rules and run lint style checkers.
Nonetheless leads to confusion (particularly for beginners), and bugs.

Few meta-programming support
* Vs. embedded TCL scripting

G\;N;,,e »
ANEFTE

PEKING UNIVERSITY

B Chisel

* Chisel: Constructing Hardware in a Scala Embedded Language
« Powerful “metaprogramming” model for building circuit generators

* Why embedded?

 Avoid the hassle of writing and maintaining a new programming
language (most of the work would go into the non-hardware specific
parts of the language anyway)

* Why Scala?

 Brings together the best of many others: Java JVM, functional
programming, OO programming, strong typing, type inference

B Chisel Workflow

Scala Compiler generates an executable (Chisel program)
« Execution of the Chisel program:
* generates an internal data structure and output called FIRRTL
(flexible intermediate representation for RTL)
* FIRRTL “processor”:
* resolves wire widths
« checks connectivity
 generates target output (verilog for now)

« FIRRTL interpreter or verilator used for simulation
waveforms

Verilog
Simulator

FIRRTL
Run Processor

0= WM odule fir Verilog back-end

Program Synthesizer i
g EIRRTL y design

Interpreter

odule.v

Module.scala
Scala

Compiler

C/Scala Based Tester

éﬁ\sh‘:,,% }

A ; atigfe};ag

(& /<) A)
IT55%

PEKING UNIVERSITY

0 B Introduction to Chisel Language

and i1

=D

* Simple Logic e 0
val out = (a & ~b) | (~a & b)

and2

oo

* Function Abstraction
e« def XOR (a:Bits, b:Bits)=(a&-b)|(~a&b)
*val z =(x & XOR(x,y)) | (XOR(x,y) & y)

B B Datatypes in Chisel 75 e)5

PEKING UNIVERSITY

 Chisel datatypes are used to specify the type of values held in state
elements or flowing on wires.

Bits Raw collection of bits (parent type)
Sint Signed integer number

Ulint Unsigned integer number

Bool Boolean

 All signed numbers represented as 2's complement

val out = (a & ~b) | (~a & b)j
val out: UInt = (a & ~b) | (~a & b)

a\seré% at%*%

% PEKING UNIVERSITY

B Bundles

class FIFOInput extends Bundle {
val rdy = Output(Bool()) //Indicates if FIFO has space
val data = Input(UInt(32.W)) //values to be enqueued
val eug = Input(Bool()) //assert to enqueue data

Instantiation:
Val jonsIO = new FIFOInput

" B Literals

”ha” .U

Y0127 .U
”bl1010” .U

5.5

-8.5

5.U

true.B

false.B

”ha” .asUInt(8.W)
-5.asSInt(32.W)

G\;N;,,e »
ANEFTE

PEKING UNIVERSITY

Hexadecimal 4-bit literal of type Bits

Octal 4-bit literal of type Bits

Binary 4-bit literal of type Bits

Signed decimal 4-bit literal of type Fix

Negative decimal 4-bit literal of type Fix
Unsigned decimal 4-bit literal of type UFix
Literals for type Bool, from Scala Boolean literals
hexadecimal 8-bit literal of type Bits, 0-extended
32-bit decimal literal of type Fix, signed-extended

" B Built-in Operators

Operators:

Chisel Explanation Width

Ix Logical NOT 1

x && y Logical AND 1

x ||y Logical OR 1

x(n) Extract bit, 0 is LSB 1

x(n, m) Extract bitfield n-m+1

x << y Dynamic left shift w(x) + maxVal(y)
x>y Dynamic right shift w(x) - minVal(y)
x << n Static left shift w(x) +n

X > n Static right shift w(x) - n

Fill(n, x) Replicate x, n times n * w(x)

Cat(x, y) Concatenate bits w(x) + w(y)
Mux(c, x, y) If ¢, then x; else y max (w(x), w(y))
~X Bitwise NOT w(x)

x&y Bitwise AND max(w(x), w(y))
x |y Bitwise OR max(w(x), w(y))
x "y Bitwise XOR max(w(x), w(y))
X ===y Equality(triple equals) 1

x =/=y Inequality 1

x+y Addition max (w(x) ,w(y))

x +hy Addition max (w(x) ,w(y))

X +& y Addition max (w(x) ,w(y))+1
X -y Subtraction max (w(x) ,w(y))

x -hy Subtraction max (w(x) ,w(y))

x -&y Subtraction max (w(x) ,w(y))+1
X *xy Multiplication w(x)+w(y)

x/y Division w(x)

xhy Modulus bits(maxVal(y)-1)
x>y Greater than 1

X >=y Greater than or equal 1

x <y Less than 1

X <=y Less than or equal 1

X >y Arithmetic right shift w(x) - minVal(y)
X >> n Arithmetic right shift w(x) - n

ez ¥

53t PEKING UNIVERSITY

PEK [
@
TL1s%

Ulnt bit-reduction methods:

Chisel Explanation Width
x.andR AND-reduce 1
x.orR OR-reduce 1
x.xorR XOR-reduce 1
As an example to apply the andR method to an SInt use
x.asUInt.andR

B Modules

3 ONT b{- bl
& A a t - J .g
| =
o o 5579\ =
598 PEKING UNIVERSITY

class Mux2 extends Module {

. select—

val io = IO(new Bundle{ ino o
val select = Input(UInt(1.W)) out
val in@ = Input(UInt(1.W)) in1 {1

val inl = Input(UInt(1.W))
val out = Output(UInt(1.W))

})

io.out := (io.select & io.inl) | SEIECt“—D"i

i —
(~io.select & io.ino@) in0

:D— output

o~

} In1

B Example-FSM

class MyFSM extends Module {

1)

val io = IO(new Bundle {
val in = Input(Bool())
val out = Output(Bool())

val IDLE :: SO :: S1 :: Nil = Enum(3)
val state = Reg(init = IDLE);
when (state === IDLE) {

when (io.in) { state := SO }

}
when (state === S0@) {
when (io.in) { state := S1 }
.otherwise { state := IDLE }
}
when (state === S1) {
when (!io.in) { state := IDLE }
}
io.out := state === S1;

(’\sru,,*!i »
4 ﬁ:jt"qyeé
Ef ot
el 5 579\ =
l558 PEKING UNIVERSITY

in=1

N AL 7S Y

% PEKING UNIVERSITY

" B Reference for Chisel

Chisel3 homepage: hitps://www.chisel-lang.org
Chisel Doc
Chisel-Bootcamp

Chisel-Book Tutorial (83Z}fx)
Chisel-Template

https://www.chisel-lang.org/
https://www.chisel-lang.org/chisel3/docs/introduction.html
https://mybinder.org/v2/gh/freechipsproject/chisel-bootcamp/master
http://www.imm.dtu.dk/~masca/chisel-book.html
http://www.imm.dtu.dk/~masca/chisel-book-chinese.pdf
https://github.com/freechipsproject/chisel-template

B B Chisel is still under development ANELF LS

PEKING UNIVERSITY

» Debug is somewhat hard
« With automatically generated intermediate wires
« Still lack good back-annotation support

 Layout efforts are disturbing
« With automatically generated intermediate wires
« Parametrized front-end design does not propagate to back-end

High-Level Synthesis

3 ONT b{- bl
&) i": - 1), 25?
| ot
LA FohF
5ot PEKING UNIVERSITY

" B HDL is not enough - Il

int foo(char x, char a, char b, char c¢) {

char vy;

- Software algorithms are jrewmmy
hard to be converted into 1 2 3
RT L Clock Cycle
» There is no "timing” in (Scheduing)
algorithms 1.1
- Software don't care wires b - — -
and registers C)
« Think about mapping a Phase
CNN layer into Verilog \ ;)
« Too complicated Target Binding psPas Addsub

(.

I B High-Level Synthesis (HLS)

a‘””% »

R e 7)%

R 5795
5os PEKING UNIVE

RSITY

N Lk LT T TR Key concepts

Starting from the high-level description of an appli-
cation, an RTL component library, and specific design
constraints, an HLS tool executes the following tasks
(see Figure 1):

Compilation

Formal model

1. compiles the specification,

2. allocates hardware resources (functional units,
_______ } - storage components, buses, and so on),
Generation 3. schedules the operations to clock cycles,
""""""""""""""""""" 4. binds the operations to functional units,
5. binds variables to storage elements,
6. binds transfers to buses, and
Logic synthesis 7. generates the RTL architecture.

i

Coussy, Philippe, et al. "An introduction to high-level synthesis." IEEE Design & Test of Computers 26.4 (2009): 8-17.

a‘”””e bl

R e 7 X 7

7N 2 5Ho9 =
l558 PEKING UNIVERSITY

0 B Typical Hardware Architectures

Control
inputs
v
Y Y
! Control D] D 1] RF/Scratch padw
signals J]
Bus 1 Y
Bus 2 — - y v
-] State)
| register | > ! |
Next- (1A
state Output|
logic logic Memory
| A
Status signals Bus 3 E;:l
Controller Data path
Y
Control
outputs

Coussy, Philippe, et al. "An introduction to high-level synthesis." IEEE Design & Test of Computers 26.4 (2009): 8-17.

B Typical HLS Compilers G de 50

PEKING UNIVERSITY

LLVM Based Compiler Xilinx Intel FPGA

AMD
XILINX

B LLVM Based HLS

Write the C code and get it into the LLVM compiler

—> Verilog

.C —y Frontend | Verilog
(clang) (opt) Backend
Hardware
optimization
passes

Intermediate Representation (IR)

entry:
%A = add i32 %B, 5
%C = icmp eq i32 %A, 0

%br i1 %C, label %next, label %entry

a‘”””e bl

R e 7 X 7

7N 2 5Ho9 =
l558 PEKING UNIVERSITY

case (state)

STO: begin
A<=B + 5;
state <= ST1;

end

ST1: begin
C<=(A ==0)
state <= S172;

end

ST2: begin
if (C)

state <= S19;
else

state <= S10;
end

endcase

B LLVM Based HLS

(’\sru,,*!i »

N e 7 S N

Ef ot

el 5 579\ =
l558 PEKING UNIVERSITY

Time
A

> 13 cycles

Mult Mem Other

B B Arithmetic tree height reduction 9"{;23

Binding can be
» done by the users
or the compilers

Short dependency chain, Long dependency chain,
High parallelism Low parallelism

B B Typical Flows/Tools of HLS

Xilinx HLS Flow:

Test C, C++, Constraints/
Bench SystemC, Directives
OpenCL API C
Y Y Y
C Simulation C Synthesis
y Y
] v
RTL Vivado HLS VHDL
Adapter Verilog
Y Y Y
RTL Simulation Packaged IP
\ A
Vivado Svstem Xilinx
Design Gesrgerator Platform
Suite Studio

Intel HLS Flow:

HLS Use Model

C/C++ Code

Standard
gce/g+t
Compiler

100% Makefile
compatible

UNT
% P

ez ¥

53t PEKING UNIVERSITY

TEK I3
.:: :@,
d116%

src.c it++ <options> H a.exe |

lib.h

Intel® Quartus®
Ecosystem

NItz Y

PEKING UNIVERSITY

" B Example of Revising C Code For HLS :: Add HLS Tags

template<typename T, int K>

static void convolution_strm(assert(width < MAX _IMG _COLS);

assert(vconv_xlim < MAX_IMG_COLS - (K - 1));

// Horizontal convolution

int height, HConvH: for(int col = @; col < height; col++) {
HConvW:for(int row = @; row < width; row++) {

#pragma HLS PIPELINE

int width,

hls::stream<T> &src,

hls::stream<T> &dst, HConv:for(int i = 0; i < K; i++) {
}}
const T *hcoeff, }
const T *vcoeff) // Vertical convolution
VConvH: for(int col = @; col < height; col++) {
{ VConvW: for(int row = @; row < vconv_xlim; row++)
#pragma HLS DATAFLOW {

#pragma HLS PIPELINE
#pragma HLS ARRAY_PARTITION variable=linebuf dim=1 complete #pragma HLS DEPENDENCE variable=linebuf inter false

}

hls::stream<T> vconv("vconv"); }

Border:for (int i = 0; i < height; i++) {
for (int j = @; j < width; j++) {

assert(height < MAX_IMG_ROWS); #pragma HLS PIPELINE

// These assertions let HLS know the upper bounds of loops

assert(width < MAX_IMG_COLS);

0 B HLS is still under development

« Too many hidden techniques while use C++/SystemC

« ASIC HLS flow is harder than FPGA flow
« Why?

* Tools under development!

3 ONT b{- bl
& A a t - J .g
| =
o o 5579\ =
598 PEKING UNIVERSITY

"B Future

» What is the best design flow you think?

* Integrate analog/digital
« Automatically tune parameters
« Readable (at least for LLM)

	Slide 1: AI ASIC: Design and Practice (ADaP) Fall 2024 Latest Hardware Design Languages
	Slide 2: HDL History
	Slide 3: HDL History
	Slide 4: HDL History
	Slide 5: Hardware Construction Language
	Slide 6: HDL is not enough - I
	Slide 7: Chisel
	Slide 8: Chisel Workflow
	Slide 9: Introduction to Chisel Language
	Slide 10: Datatypes in Chisel
	Slide 11: Bundles
	Slide 12: Literals
	Slide 13: Built-in Operators
	Slide 14: Modules
	Slide 15: Example-FSM
	Slide 16: Reference for Chisel
	Slide 17: Chisel is still under development
	Slide 18: High-Level Synthesis
	Slide 19: HDL is not enough - II
	Slide 20: High-Level Synthesis (HLS)
	Slide 21: Typical Hardware Architectures
	Slide 22: Typical HLS Compilers
	Slide 23: LLVM Based HLS
	Slide 24: LLVM Based HLS
	Slide 25: Arithmetic tree height reduction
	Slide 26: Typical Flows/Tools of HLS
	Slide 27: Example of Revising C Code For HLS :: Add HLS Tags
	Slide 28: HLS is still under development
	Slide 29: Future

