
PUMA: A Programmable Ultra-efficient
Memristor-based Accelerator

for Machine Learning Inference
Aayush Ankit
Purdue University,

Hewlett Packard Enterprise

Izzat El Hajj∗
American University of Beirut

Sai Rahul Chalamalasetti
Hewlett Packard Enterprise

Geoffrey Ndu
Hewlett Packard Enterprise

Martin Foltin
Hewlett Packard Enterprise

R. Stanley Williams
Hewlett Packard Enterprise

Paolo Faraboschi
Hewlett Packard Enterprise

Wen-mei Hwu
University of Illinois at
Urbana-Champaign

John Paul Strachan
Hewlett Packard Enterprise

Kaushik Roy
Purdue University

Dejan S Milojicic
Hewlett Packard Enterprise

Abstract
Memristor crossbars are circuits capable of performing ana-
log matrix-vector multiplications, overcoming the fundamen-
tal energy efficiency limitations of digital logic. They have
been shown to be effective in special-purpose accelerators
for a limited set of neural network applications.
We present the Programmable Ultra-efficient Memristor-

based Accelerator (PUMA) which enhances memristor cross-
bars with general purpose execution units to enable the
acceleration of a wide variety of Machine Learning (ML)
inference workloads. PUMA’s microarchitecture techniques
exposed through a specialized Instruction Set Architecture
(ISA) retain the efficiency of in-memory computing and ana-
log circuitry, without compromising programmability.
We also present the PUMA compiler which translates

high-level code to PUMA ISA. The compiler partitions the
computational graph and optimizes instruction scheduling
and register allocation to generate code for large and complex
workloads to run on thousands of spatial cores.

We have developed a detailed architecture simulator that
incorporates the functionality, timing, and power models of
∗Work done while at University of Illinois at Urbana-Champaign

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304049

PUMA’s components to evaluate performance and energy
consumption. A PUMA accelerator running at 1 GHz can
reach area and power efficiency of 577 GOPS/s/mm2 and
837 GOPS/s/W, respectively. Our evaluation of diverse ML
applications from image recognition, machine translation,
and language modelling (5M-800M synapses) shows that
PUMA achieves up to 2,446× energy and 66× latency im-
provement for inference compared to state-of-the-art GPUs.
Compared to an application-specific memristor-based ac-
celerator, PUMA incurs small energy overheads at similar
inference latency and added programmability.

Keywords memristors, accelerators, machine learning, neu-
ral networks

ACM Reference Format:
Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey
Ndu, Martin Foltin, R. Stanley Williams, Paolo Faraboschi, Wen-
mei Hwu, John Paul Strachan, Kaushik Roy, and Dejan S Milojicic.
2019. PUMA: A Programmable Ultra-efficient Memristor-based Ac-
celerator for Machine Learning Inference. In 2019 Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS ’19), April 13–17, 2019, Providence, RI, USA. ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3297858.3304049

1 Introduction
General-purpose computing systems have benefited from
scaling for several decades, but are now hitting an energy
wall. This trend has led to a growing interest in domain-
specific architectures. Machine Learning (ML) workloads
in particular have received tremendous attention because
of their pervasiveness in many application domains and
high performance demands. Several architectures have been
proposed, both digital [20, 21, 36, 61, 72, 89] andmixed digital-
analog using memristor crossbars [22, 23, 73, 95, 100].

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

715

https://doi.org/10.1145/3297858.3304049
https://doi.org/10.1145/3297858.3304049
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3297858.3304049&domain=pdf&date_stamp=2019-04-04

ML workloads tend to be data-intensive and perform a
large number of Matrix Vector Multiplication (MVM) opera-
tions. Their execution on digital CMOS hardware is typically
characterized by high data movement costs relative to com-
pute [49]. To overcome this limitation, memristor crossbars
can store a matrix with high storage density and perform
MVM operations with very low energy and latency [5, 13, 52,
87, 98, 116]. Each crosspoint in the crossbar stores a multi-bit
value in one memristor device, which enables high storage
density [112]. Upon applying an input voltage at the cross-
bar’s rows, we get the MVM result as output current at the
crossbar’s columns based on Kirchhoff’s law. A crossbar
thus performs MVM in one computational step – includ-
ing O(n2) multiplications and additions for an n × n matrix
– which typically takes many steps in digital logic. It also
combines compute and storage in a single device to alleviate
data movement, thereby providing intrinsic suitability for
data-intensive workloads [23, 95].

Memristor crossbars have been used to build special-purpose
accelerators for Convolutional Neural Networks (CNN) and
Multi Layer Perceptrons (MLP) [23, 73, 95], but these designs
lack several important features for supporting general ML
workloads. First, each design supports one or two types of
neural networks, where layers are encoded as state machines.
This approach is not scalable to a larger variety of workloads
due to increased decoding overhead and complexity. Second,
existing accelerators lack the types of operations needed
by general ML workloads. For example, Long Short-Term
Memory (LSTM) [51] workloads require multiple vector lin-
ear and transcendental functions which cannot be executed
on crossbars efficiently and are not supported by existing
designs. Third, existing designs do not provide flexible data
movement and control operations to capture the variety
of access and reuse patterns in different workloads. Since
crossbars have high write latency [54], they typically store
constant data while variable inputs are routed between them
in a spatial architecture. This data movement can amount to
a significant portion of the total energy consumption which
calls for flexible operations to optimize the data movement.
To address these limitations, we present PUMA, a Pro-

grammable Ultra-efficientMemristor-basedAccelerator. PUMA
is a spatial architecture designed to preserve the storage den-
sity of memristor crossbars to enable mapping ML applica-
tions using on-chip memory only. It supplements crossbars
with an instruction execution pipeline and a specialized ISA
that enables compact representation of ML workloads with
low decoder complexity. It employs temporal SIMD units
and a ROM-Embedded RAM [69] for area-efficient linear and
transcendental vector computations. It includes a microar-
chitecture, ISA, and compiler co-designed to optimize data
movement and maximize area and energy efficiency. To the
best of our knowledge, PUMA is the first programmable and
general-purpose ML inference accelerator built with hybrid
CMOS-memristor technology.

A naïve approach to generality is not viable because of
the huge disparity in compute and storage density between
the two technologies. CMOS digital logic has an order of
magnitude higher area requirement than a crossbar for equal
output width (∼20×, see Table 3). Moreover, a crossbar’s
storage density (2-bit cells) is 160MB/mm2, which is at least
an order of magnitude higher than SRAM (6T, 1-bit cell) [95].
A 90mm2 PUMA node can store ML models with up to 69MB
of weight data. Note that the PUMA microarchitecture, ISA,
and compiler are equally suitable to crossbars made from
emerging technologies other than memristors such as STT-
MRAM [94], NOR Flash [46], etc.

We make the following contributions:
• A programmable and highly efficient architecture ex-
posed by a specialized ISA for scalable acceleration
of a wide variety of ML applications using memristor
crossbars.

• A complete compiler which translates high-level code
to PUMA ISA, enabling the execution of complexwork-
loads on thousands of spatial cores.

• A detailed simulator which incorporates functionality,
timing, and power models of the architecture.

• An evaluation acrossMLworkloads showing that PUMA
can achieve promising performance and energy effi-
ciency compared to state-of-the-art CPUs, GPUs, TPU,
and application-specific memristor-based accelerators.

Our simulator and compiler have been open-sourced to en-
able further research on this class of accelerators.

2 Workload Characterization
This section characterizes different ML inference workloads
with a batch size of one. The characteristics are summarized
in Table 1. The section’s objective is to provide insights
on the suitability of memristor crossbars for accelerating
ML workloads and highlight implications on the proposed
architecture.

2.1 Multi-Layer Perceptron (MLP)
MLPs are neural networks used in common classification
tasks such as digit-recognition, web-search, etc. [26, 61]. Each
layer is fully-connected and applies a nonlinear function to
the weighted-sum of outputs from the previous layer. The
weighted-sum is essentially an MVM operation. Equation 1
shows the computations in a typical MLP (act is nonlinear):

O[y] = act(B[y] +
n−1∑
x=0

I [x] ×W [x][y]) (1)

MLPs are simple, capturing the features common across
the ML workloads we discuss: dominance of MVM opera-
tions, high data parallelism, and use of nonlinear operations.

2.1.1 Dominance of MVM
MVM operations areO(n2) in space and computational com-
plexity, whereas the nonlinear operations are O(n), where n

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

716

Table 1.Workload Characterization
Characteristic MLP LSTM CNN

Dominance of MVM Yes Yes Yes
High data parallelism Yes Yes Yes
Nonlinear operations Yes Yes Yes
Linear operations No Yes No
Trancendental operations No Yes Yes
Weight data reuse No Yes Yes
Input data reuse No No Yes
Bounded resource Memory Memory Compute
Sequential access pattern Yes Yes No

is the matrix dimension (layer size). MVMs are therefore the
dominant operation in MLPs (and other ML workloads). This
propertymakesmemristor crossbars suitable for acceleration
since they perform analog MVMs with low energy/latency.

2.1.2 High data parallelism
MLPs (and other ML workloads) have massive amounts of
data parallelism. Moreover, practical model sizes are larger
than the typical on-chip storage that can be provided by
SRAM. For this reason, CMOS implementations suffer from
costly DRAM accesses which are particularly taxing due to
the absence of data reuse to amortize them. On the other
hand, crossbars have extremely high area efficiency which
allows deployingmany of them on a single chip. Doing so not
only captures the high data parallelism in these workloads,
but it also provides high storage density to fit models on-chip
and bypass costly DRAM accesses.

2.1.3 Nonlinear operations
In addition to MVM operations, MLPs (and other ML work-
loads) perform nonlinear vector operations (e.g., ReLU). Since
these operations cannot be performed in crossbars, an im-
plication on the architecture is the need to provide digital
functional units to support them. Such functional units con-
sume significantly more area (∼20×) than crossbars for equal
output width (see Table 3). The challenge is to size these
units appropriately to provide sufficient throughput without
offsetting crossbar area/energy efficiency.

2.2 Long Short-Term Memory (LSTM)
LSTMs are the state-of-the-art technique for sequence pro-
cessing tasks like speech processing, language modelling,
etc. [51]. Each layer is fully connected and performs linear
and nonlinear operations on the weighted-sum of outputs
and the previous state. These operations translate into two
MVMs followed by multiple (typically four) vector arith-
metic operations and (typically four) nonlinear functions.
Equations 2 to 4 show the computations in a typical LSTM:

F t[y] = act(B[f] +
n−1∑
x=0

(H , I)[x] ×W f[x][y]) (2)

Ct[y] =
n−1∑
x=0

(f t[y] ×Ct-1[y] + дt[y] ×Cpt-1[y]) (3)

H t[y] =
n−1∑
x=0

(ht[y] ×Ct[y]) (4)

To the best of our knowledge, PUMA is the first memristor-
based accelerator demonstrated with LSTMs.

2.2.1 Linear and transcendental operations
Unlike MLPs, LSTMs also perform linear vector operations.
Moreover, the typical nonlinear vector operations in LSTMs
are transcendental (e.g. tanh, sigmoid). Supporting these
operations has the same implication on the architecture as
discussed in Section 2.1.3 for nonlinear operations. Transcen-
dental operations are particularly challenging due to their
high complexity.

2.2.2 Weight reuse
Another key distinction of LSTMs compared to MLPs is data
reuse. LSTM inputs consist of a sequence of vectors pro-
cessed across multiple time-steps with the same weights.
This feature benefits CMOS architectures by amortizing
DRAM accesses for loading weights, but is not advantageous
to memristor crossbars. That said, the scope of weight reuse
in LSTMs is only over a few inputs so the workload remains
memory-bound. It still suffers in CMOS hardware from in-
sufficient amortization of DRAM accesses.

2.3 Convolutional Neural Network (CNN)
CNNs are widely used for image recognition and classifi-
cation [67]. They typically include several convolutional,
pooling, and response normalization layers. A convolution
layer consists of weight kernels strided across the input im-
age in a sliding window fashion. It exhibits a non-sequential
memory access pattern since a window of the input consists
of parts of the input image from different rows. Equation 5
shows the computations in a typical convolutional layer of a
CNN:

O[m][x][y] = act(B[m]+

R−1∑
i=0

S−1∑
j=0

C−1∑
k=0

I [k][Ux + i][Uy + j]×W [m][k][i][j])
(5)

2.3.1 Input reuse and compute intensity
Convolution layers exhibit both weight and input data reuse.
They can be mapped to matrix-matrix multiplications which
successively apply weight kernels on different input win-
dows.Matrix-matrixmultiplications are compute-boundwhich
makes them well-suited for CMOS hardware since there is
enough data reuse to amortize DRAM access cost. However,
memristor crossbars can still perform well on matrix-matrix
operations by treating them as successive MVMs. An impli-
cation on architecture is the opportunity to take advantage
of input reuse to minimize data movement within the chip.
Another implication is that iterating over inputs creates the
need for control flow to represent the workload compactly
without code bloat.

2.3.2 Non-sequential access
Unlike MLPs and LSTMs, CNNs exhibit non-sequential ac-
cesses due to the way inputs are traversed as well as the
behavior of non-convolutional layers such as pooling and

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

717

response-normalization. An implication on the architecture
is the need to support fine-grain/random access to memory,
which is not needed for MLPs and LSTMs where it is suffi-
cient to access data at the granularity of the input/output
vectors to each layer.

2.4 Other ML Workloads
Other workloads, both supervised and unsupervised, can be
represented using a combination of the patterns in the three
applications in this section. Logistic Regression [2] and Linear
Regression [81] compute weighted-sums which are passed to
activation functions to generate probabilities and continuous
values respectively. Support Vector Machine (SVM) [41] and
Recommender Systems [91] compute weighted-sums followed
by nonlinear functions. Their computations are similar to
MLP. Recurrent Neural Networks (RNNs) [75] used for se-
quence processing compute weighted-sums on input and
previous state. They are similar to LSTMs but without vector
operations. Generative Adversarial Networks (GANs) are com-
posed of two neural networks (MLP, LSTM, CNN, etc.) which
compete to reach equilibrium [44]. Restricted Boltzmann Ma-
chines (RBM) [102] and Boltzmann Machines (BM) [104] are
commonly used in unsupervised learning tasks for energy-
minimization. While RBM involves weighted-sums of previ-
ous state and inputs, BM uses inputs only. Their computa-
tions have similarities to MLPs and LSTMs as well.

3 Core Architecture
We propose a programmable architecture and ISA design that
leverage memristor crossbars for accelerating ML workloads.
PUMA is a spatial architecture organized in three-tiers: cores,
tiles, and nodes. Cores consist of analog crossbars, functional
units, and an instruction execution pipeline. Tiles consist
of multiple cores connected via a shared memory. Nodes
consist of multiple tiles connected via an on-chip network.
Subsequently, nodes can be connected together via a chip-
to-chip interconnect for large-scale execution.

While this hierarchical organization is common in related
work [20, 95], our key contributions lie in the core archi-
tecture (this section) and tile architecture (Section 4) that
bring programmability and generality to memristor cross-
bars without compromising their energy and area efficiency.
An overview of the core architecture is shown in Figure 1.
The following subsections discuss the components of the
core architecture and the insights behind their design.

3.1 Instruction Execution Pipeline
Existing memristor-based accelerators [23, 73, 95] are lim-
ited to one or two ML workloads. They use state machines
that can be configured to compose a small set of functional
blocks (e.g., convolution block, pooling block, etc.). While
this approach works well when the scope of workloads is
small, supporting a larger variety of workloads creates high

PC

Instruction
Memory

D
E
C
O
D
E

DAC
array

XbarIn
Registers

ADC

Pipelined MVMU

XbarOut
Registers

Register File
(ROM-Embedded RAM)

Operand Steer Unit

FU FU FU

VFU
MU

Data writeback

D
ec

o
d

ed
 i

n
st

ru
ct

io
n

SFU

Stall/KillControl
Unit

to/from

tile

memory

FETCH EXECUTE

MVMU

DAC

ADC

VFU

SFU

MU

Matrix vector multiplication unit

Digital to analog converter

Analog to digital converter

Vector functional unit

Scalar functional unit

Memory unit

Figure 1. Core Architecture

W[1:0]x y0

W[3:2]x y1

2×2, 4-bit
W

x y

Input Weight Output

g12

g21 g22

(a) Analog MVM

INT

Multiplexer

DAC

DAC

INT

ADC

g11v2

v1

I1 I2

INT: integrator
(Converts current

to voltage)
Shift-&-Add

𝐼𝑗 =

𝑖=1

𝑛

𝑉𝑖 ∗ 𝑔𝑖𝑗

(b) Bit Slicing

Figure 2.MVM with Crossbars

decoding complexity. For this reason, our core architecture
breaks functionality down to finer-grain instructions and
supplements memristor crossbars with an instruction exe-
cution pipeline. Our approach is based on the observation
in Section 2 that despite the large variety of ML workloads,
these workloads share many low-level operations.

The instruction execution pipeline is an in-order pipeline
with three stages: fetch, decode, and execute. Keeping the
pipeline simple saves area to avoid offsetting the crossbars’
area efficiency. The ISA executed by the pipeline is summa-
rized in Table 2. Instructions are seven bytes wide. The mo-
tivations for wide instructions are discussed in Sections 3.3
and 3.4.3. The ISA instruction usage is shown in Section 3.6.
More ISA details are discussed in another paper [7].
The instruction execution pipeline supports control flow

instructions (jmp and brn in Table 2), as motivated in Sec-
tion 2.3.1. It also includes a Scalar Functional Unit (SFU) that
performs scalar integer operations (ALUint in Table 2) to
support the control flow instructions.

3.2 Matrix-Vector Multiplication Unit (MVMU)
The MVMU (illustrated in Figure 1) consists of memristor
crossbars that perform analog MVM operations, and periph-
erals (DAC/ADC arrays) that interface with digital logic via
the XbarIn and XbarOut registers. XbarIn registers provide
digital inputs to the DACs which feed analog voltages to
the crossbar. ADCs convert crossbar output currents to dig-
ital values which are stored in the XbarOut registers. This
crossbar design is similar to ISAAC [95].

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

718

Table 2. Instruction Set Architecture Overview
Category Instruction Description Operands

Compute

MVM Matrix-Vector Multiplication mvm, mask, -, filter, stride, -, -

ALU
Vector arithmetic/logical (add, subtract, multiply, divide, shift, and, or, invert)

alu, aluop, dest, src1, src2, src3, vec-widthVector non-linear (relu, sigmoid, tanh, log, exponential)
Other (random vector, subsampling, min/max)

ALUimm Vector arithmetic immediate (add, subtract, multiply, divide) alui, aluop, dest, src1, immediate, vec-width
ALUint Scalar arithmetic (add, subtract) - Compare (equal, greater than, not equal) alu-int, aluop, dest, src1, src2, -, -

Intra-Core set Register initialization set, -, dest, immediate, -, -
Data Movement copy Data movement between different registers copy, -, dest, src1, -, ld-width, vec-width
Intra-Tile load Load data from shared memory load, -, dest, immediate, -, -
Data Movement store Store data to shared memory store, -, dest, src1, count, st-width, vec-width
Intra-Node send Send data to tile send, memaddr, fifo-id, target, send-width, vec-width
Data Movement receive Receive data from tile receive, memaddr, fifo-id, count, rec-width, vec-width

Control jmp Unconditional jump jmp, -, -, -, -, pc
brn Conditional jump brn, brnop, -, src1, src2, pc

Figure 2(a) shows how memristor crossbars can be used
to perform analog MVM operations. DACs convert the input
vector to analog voltages applied at crossbar rows. The ma-
trix is encoded as conductance states (дij) of the devices that
constitute the crossbar. The currents at crossbar columns
constitute the MVM result. They are integrated (converted
to voltage) then converted to digital values with ADCs.

3.2.1 Precision Considerations
Practically realizable crossbars provide 2-6 bits of precision
per device [52]. We conservatively use 2 bits per device, and
realize 16-bit MVM operations by combining 8 crossbars via
bit-slicing [95], illustrated in Figure 2(b). ADCs are reused
across columns to save area. The impact of precision on
inference accuracy is evaluated in Section 7.6.

3.2.2 Crossbar Co-location and Input Sharing
Crossbar peripherals have an order of magnitude higher
area than the crossbar. Since all eight 2-bit crossbars of a
16-bit MVM operation are used simultaneously on the same
input, we co-locate these 2-bit crossbars on the same core
in the same MVMU, which allows us to use the same XbarIn
registers and DAC array to feed them with minimal routing
congestion. This co-location and input reuse is provided
transparently in the ISA, which exposes a full 16-bit MVM
operation in a single instruction (MVM in Table 2).

3.2.3 Input Shuffling
As motivated in Section 2.3.1, ML workloads with sliding
window computations typically reuse large portions of the
input across successive MVM operations (∼80% for convo-
lutional layers with filter size 5 and unit stride). However,
reused input values may come at different positions in the
input vector. To avoid moving data around in XbarIn, the
MVM instruction provides operands (filter/stride in Table 2)
that re-route XbarIn registers to different DACs, enabling
logical input shuffling without physical data movement.

3.2.4 Multiple MVMUs per Core
A core may have multiple MVMUs, in which case it is desir-
able to activate them in parallel since MVMs are heavy opera-
tions. The in-order pipeline does not capture the Instruction-
Level Parallelism (ILP) between MVM instructions automati-
cally. Instead, the ISA exposes an operand (mask in Table 2)

to allow a single MVM instruction to activate multiple MV-
MUs at once. Compiler optimizations that use this operand
are discussed in Section 5.3.2.

3.2.5 Crossbar Writes
PUMA is an inference accelerator, so crossbars are initialized
with weights using serial writes at configuration time prior
to execution and are not written to throughout execution.
In this sense, PUMA is a spatial architecture where data is
routed between crossbars, each crossbar storing a different
portion of the model. Larger models therefore require more
area, and may scale to multiple nodes.

3.3 Vector Functional Unit (VFU)
The VFU executes linear and nonlinear vector operations
(ALU and ALUimm in Table 2), as motivated by Sections 2.1.3
and 2.2.1. An important aspect of designing vector instruc-
tions and the VFU is choosing the vector width. Since ML
workloads have high data parallelism, they execute wide vec-
tor operations, which motivates having wide vector instruc-
tions. Wide vector instructions have the benefit of reducing
instruction count, and consequently, fetch, decode, and in-
struction storage overhead. On the other hand, hardware
considerations motivate having narrow VFU vector width to
avoid offsetting the area efficiency of crossbars as discussed
in Section 2.1.3.

To balance the tension between workloads favoring wide
vector width and hardware favoring narrow vector width,
we propose a VFU design based on temporal SIMD. Temporal
SIMD uses a narrow width VFU to execute wide vectors over
multiple cycles. The vector instruction operands specify the
starting address of the vectors in the register file as well as
the vector width (vec-width in Table 2). The operand steer
unit holds the decoded instruction and reads the operands
from the register file over subsequent cycles to feed the VFU.
The additional vec-width operand required by temoral SIMD
motivates our wide instruction design.

Provisioning the adequate width for VFUsmaintains cross-
bar area efficiency benefits without the VFU becoming a
bottleneck and compromising throughput. A narrow VFU is
possible because typical ML workloads compute O(n) more
operations per MVM instruction than per vector instruction.
Section 7.6 evaluates the impact of VFU width on efficiency.

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

719

b) ROM: Cell 0 (AXL connected to WL 2) stores 0. Cell 1 (AXL connected to WL1) stores 1.

a) RAM

BL

AXL

Cell 0 Cell 1

AXR AXL AXR AXL

BLB BL BLB BL

WL 1
WL 2

BL

AXL

Cell 0 Cell 1

AXR AXL AXR AXL

BLB BL BLB BL

WL 1
WL 2

❶Activate WL 1&2

❷ Read data

❶Activate WL 1&2

❸Write 1

❹ Deactivate WL 1

❺Write 0

❻ Reactivate WL 1

❼ Read data
❽ Restore from buffer

❷ Copy data to buffer

x

Buffer

1
0
x

Buffer

1
x

Figure 3. ROM-Embedded RAM

3.4 Register File
We propose a register file design that uses ROM-Embedded
RAM [69] to accomplish two objectives: (1) harboring general
purpose registers, and (2) providing area-efficient transcen-
dental function evaluations as motivated in Section 2.2.1.

3.4.1 Implementing transcendental functions
Area-efficient function evaluations are crucial for preserving
crossbar storage density. For this reason, we use a ROM-
Embedded RAM structure [69] which adds a wordline per
row to embed a ROM that is used to store look-up tables with-
out increasing the array area or RAM latency. Alternative
digital implementations to support transcendental functions
are prohibitive due to their high area requirements, espe-
cially in light of the large number of transcendental function
types used in ML. Transcendental function evaluations also
use temporal SIMD (Section 3.3) to minimize fetch/decode
energy consumption.

Figure 3 details the operation of a ROM-Embedded RAM.
In RAM mode, both wordlines (WL1 andWL2) are activated,
followed by precharging or driving the bitlines for read or
write operations, respectively (similar to typical SRAM). In
ROM mode, since a ROM access overwrites the RAM data,
the first step is to buffer the RAM data. Subsequently, 1 is
written to all cells with both wordlines activated. Next, 0
is written to all cells while keeping the WL1 deactivated,
which writes 0 to a cell only if its AXL is connected to WL2.
Therefore, cells with AXL connected to WL1 and WL2, will
store a ROM value of 1 and 0, respectively. A read with
both wordlines activated is done to retrieve the ROM data,
followed by restoring the original RAM contents.

3.4.2 Sizing the register file
The register file enables buffering data in general purpose
registers to avoid higher-cost access to shared memory. How-
ever, if the register file were too large, it would degrade core
storage density. A key point to observe is that the major-
ity of ML kernels are such that data is consumed within

0% 20% 40% 60% 80% 100%

CNN (Lenet5)
MLP (64-150-150-14)

LSTM (26-120-61)
RNN (26-93-61)

BM (V500-H500)
RBM (V500-H500)

Inter-Tile Data Transfer Inter-Core Data Transfer Control Flow
Scalar Functional Unit Vector Functional Unit MVM Unit (crossbar)

Figure 4. Static instruction usage showing the importance
of different execution units.

1-2 instructions after being produced. This property is pre-
served via proper instruction scheduling by the compiler to
reduce register pressure (Section 5.3.1). Therefore, we provi-
sion a per-core register file size of 2*(crossbar dimension)*(#
crossbars per core). This size retains storage density while ad-
dressing the buffering requirements in the common case as
shown in Section 7.6. For window-based computations such
as pooling layers that have a large number of intervening
instructions (due to non-sequential data access across rows),
the compiler spills registers to tile memory (Section 5.4).

3.4.3 ISA implications
To accommodate the large register file required to match
crossbar size, long operands are used in ISA (src and dest in
Table 2), which is another motivation for the wide instruc-
tion design. To accommodate moving data between general
purpose registers and XbarIn/XbarOut registers, a copy in-
struction is included.

3.5 Memory Unit (MU)
The MU interfaces the core with the tile memory via load
and store instructions. These instructions can be executed at
16-bit word granularity to support random access as moti-
vated in Section 2.3.2. However, the instructions also take a
vec-width operand for wide vector loads caused by sequen-
tial access patterns. Vector loads also use temporal SIMD
(Section 3.3) to minimize fetch/decode energy consumption.

3.6 Static Instruction Usage
Figure 4 shows the breakdown of the static instruction count
for six different MLworkloads. The breakdown demonstrates
that MVM alone is insufficient to support all types of work-
loads, and that the ISA and functional units proposed can
be used to bridge that gap. The ratio of instructions requir-
ing MVMU versus VFU varies depending on the number of
matrix versus vector transformation layers in the network.
CNNs additionally use control flow instructions as discussed
in Section 2.3.1. Deeper (or wider) versions of the same net-
works tend to have a similar instruction breakdown, except
for data movement instructions which tend to be higher to
implement larger matrices spanning multiple cores and tiles.

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

720

Data

Memory Controller

Attribute

Buffer

Instruction

Memory
W

ri
te

 m
u
x R

ead
 m

u
x

FIFO

FIFO

Tile

Control

Unit

Receive Buffer

to/from

Router

Shared Memory

CORE 0 CORE 1 CORE 2 CORE N

Figure 5. Tile Architecture

Invalid Valid

read
(block reader

until data is

valid)

write
(set count)

read, count=1
(atomically dec-

rement count)

read, count>1
(atomically dec-

rement count)

write
(block writer until

data is invalid)

Figure 6. Inter-core synchronization mechanism

3.7 Summary
In summary, the core architecture provides programmabil-
ity while maintaining crossbar area efficiency. It features an
instruction pipeline exposed by an ISA to support a wide
variety of ML workloads. The use of temporal SIMD and
ROM-Embedded RAM enable linear, nonlinear, and transcen-
dental vector operations. Data movement optimizations are
enabled via input shuffling, proper sizing of the register file,
and flexible memory access instructions.

4 Tile Architecture
Figure 5 illustrates the architecture of a tile. A tile is com-
prised of multiple cores connected to a shared memory. The
tile instruction memory holds send and receive instructions
that move data between tiles. The shared memory and re-
ceive buffer are described in the following subsections.

4.1 Shared Memory
The shared memory facilitates communication across cores
and tiles. Our shared memory design follows two key princi-
ples: (1) enabling inter-core synchronization, and (2) sizing
the shared memory to preserve storage density.

4.1.1 Inter-core synchronization
Synchronization between cores happens when the output
of one layer is sent as input to the next layer. It also hap-
pens within a layer if a large weight matrix is partitioned
across multiple cores and tiles and partial MVM results need
to be aggregated together. To enable synchronization, we
augment the shared memory with an attribute buffer that
has two attributes per data entry: valid and count. The use
of valid and count is illustrated in Figure 6. This mechanism
enables consumer cores to block until producer cores have
written their values, and ensures that producer cores do not
overwrite data until it is consumed.

4.1.2 Sizing the shared memory
ML workloads may require buffering large number of inputs
to utilize their weight reuse pattern. However, a large shared
memory degrades the crossbar storage density. PUMA’s spa-
tial architecture enables programming inter-core/tile pipelines
that exploit the inter-layer parallelism in ML workloads
with weight reuse. These pipelines can be used to maintain
throughput while keeping the shared memory size small.
The pipeline parallelism is based on the observation that we
do not require all the outputs of previous layer to start the
current layer computation. For example, LSTMs process a
sequence of vectors with S ∗ N inputs per layer, where S is
the number of vectors per input sequence and N is vector
size. A layer can begin its computation as soon as its first
N inputs are available. Section 7.5 discusses the sizing re-
quirements for different workloads and the impact on energy
consumption.

4.2 Receive Buffer
The receive buffer is an N ×M structure with N FIFOs, each
withM entries. FIFOs ensure that data being sent from the
same source tile is received in the same order. Having mul-
tiple FIFOs enables multiple source tiles to send data con-
currently using different FIFOs. It also enables data to be
received through the network independently of receive in-
struction ordering in the program. This independence is im-
portant because receive instructions are executed in program
order in a blocking manner for hardware simplicity.
Each send and receive instruction has a fifo-id operand

that specifies the receiving FIFO to be used for incoming
data. Using the FIFO ID instead of the sender tile ID provides
additional flexibility for the compiler to apply FIFO virtual-
ization, where a FIFO can be used by different sender tiles
in different programs or program phases while keeping the
number of physical FIFOs small. The key insight is that a
typical ML layer will receive inputs from the tiles mapped to
the previous layer only. Therefore, using 16 FIFOs (despite
the node having 138 tiles) supports workloads with up to
(16 tiles)*(8 cores)*(2 MVMU)*128 previous layer activations,
which suffices for large-scale ML workloads.

4.3 Summary
In summary, PUMA tiles enable inter-core synchronization,
inter-core/tile pipelines to contain shared memory size, and
FIFO virtualization for efficient inter-tile communication.

5 Compiler
PUMA is a spatial architecture (not a data-parallel processor)
which means that each core/tile executes a different set of
instructions. Writing different code for each core/tile is not
scalable as applications grow in size and complexity. A com-
piler is therefore mandatory for programmer productivity.
This section describes key aspects of the compiler, while

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

721

01 Model m = Model::create(“example”);

02

03 InVector x = InVector::create(m, M, “x”);

04 InVector y = InVector::create(m, M, “y”);

05 OutVector z = OutVector::create(m, N, “z”);

06

07 ConstMatrix A = ConstMatrix::create(m, M, N, “A”);

08 ConstMatrix B = ConstMatrix::create(m, M, N, “B”);

09

10 z = tanh(A*x + B*y);

11

12 g.compile();

x y

MVM
(A)

MVM
(B)

z

ADD

TANH

Figure 7. Simple Code Example

other implementation details of the compiler and the rest of
the software stack are described in another paper [7].

5.1 Programming Interface
The PUMA compiler is a runtime compiler implemented as a
C++ library. A simple code example is shown in Figure 7. The
programmer first creates a model (line 01) with input/output
vectors (lines 03-05) and constant matrices (lines 07-08). The
programmer may also create vector streams which are useful
for setting up inter-core/tile pipelines (see Section 4.1.2). The
programmer then describes a computation (line 10) which
executes at run time to build a graph of the model (Figure 7
on the right). Finally, the model is compiled (line 12) to gen-
erate PUMA assembly code for each core and tile. In addition
to this native interface, ONNX bindings are also provided
for further adoption and interoperability, enabling the com-
pilation of models written in popular DNN frameworks such
as Caffe2, PyTorch, Cognitive Toolkit, MXNet, and others.

5.2 Graph Partitioning
The first step in the compilation process is graph partitioning.
The compiler divides tensors into 2D tiles, each the size of
one MVMU, with appropriate padding, and divides the cor-
responding vectors and operations in the model accordingly.
Next, the graph is hierarchically partitioned, distributing sub-
graphs to different MVMUs, cores, and tiles as shown in the
example in Figure 8. The partitioning scheme used in this pa-
per prioritizes placing MVMUs that feed to the same outputs
together on the same core/tile, followed by those that read
the same inputs, followed by those that feed each other (i.e.,
producer-consumer MVMUs). After partitioning the graph,
the compiler inserts load/store operations across cores and
allocates shared memory accordingly, reusing memory lo-
cations when there is pipelining. The compiler also inserts
send/receive operations across tiles and assigns FIFO IDs
accordingly (see Section 4.2), thereby virtualizing the FIFOs
and ensuring there are no conflicts.

5.3 Instruction Scheduling
After the graph is partitioned into a sub-graph for each
core/tile, the compiler schedules instructions by lineariz-
ing each sub-graph. Instruction scheduling has three main
objectives: reducing register pressure, capturing ILP of MVM
operations, and avoiding deadlock.

MVM MVM

store

store loadsend recv

MVM MVM

load

MVM MVM

store

MVM MVM

load

Tile 0

Core 0 Core 1 Core 2 Core 3

Tile 1

MVMU 0 MVMU 1 MVMU 2 MVMU 3 MVMU 4 MVMU 5 MVMU 6 MVMU 7

MVM MVM MVM MVM MVM MVM MVM MVM

= Non-MVM computation

Figure 8. Graph Partitioning Example

MVM

(A)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(B)

MVM

(A)

MVM

(A)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(A)

MVM

(B)

MVM

(A)

(a) Sub-graph to be

scheduled on a single

core with two

crossbars storing

matrices A and B

(b) Naïve linearization (high pressure)

(c) Reverse postorder linearization (low pressure)

(d) Poor coalescing creates high pressure

(e) Good coalescing enables low-pressure

Figure 9. Instruction Scheduling Example

5.3.1 Reducing register pressure
There are many possible ways to linearize the sub-graph, as
long as source operations are visited before their destinations
to enforce data dependencies. We use a reverse post-order
traversal which prioritizes consuming produced values be-
fore producing new ones. This ordering reduces the number
of live values, hence the register pressure. Figure 9(b) and
(c) show two correct linearizations of the sub-graph in Fig-
ure 9(a). Reverse postorder in Figure 9(c) results in fewer live
values at any point in time.

5.3.2 Capturing ILP of MVM operations
As explained in Section 3.2.4, it is desirable to run differ-
ent MVMUs in the same core simultaneously. The compiler
must therefore fuse independent MVM operations on dif-
ferent MVMUs in the same core. We call this optimization
MVM coalescing. MVMs can be coalesced when there are
no data dependences between them. It is also desirable to
coalesce MVMs whose results are consumed soon after one
another to reduce register pressure. The compiler’s strategy
for coalescing is to first look for coalescing candidates among
MVMs that are tiles of the same large MVM operation. Once
those are exhausted, the remaining MVMs are coalesced
by traversing the graph in reverse poster-order (before lin-
earization) and fusing each MVM node with the first eligible

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

722

a b

c

d e

f

Data dependence

Control dependence

(a) Graph to be

linearized

(b) Linearization

with deadlock

(c) Linearization

without deadlock

c f

a

b

c

d

e

f

a

b

d

e

Core 0 Core 1

Figure 10. Deadlock Avoidance Example

candidates in the traversal order. The dependence informa-
tion is updated every time a fusion takes place. Finally, the
graph is traversed one last time to perform the linearization.
Figure 9(d) and (e) show two example linearizations, with
Figure 9(e) following the proposed approach resulting in
fewer live values at once.

5.3.3 Avoiding deadlock
Linearizing the sub-graph of each core introduces control
edges to the graph. Since communication across cores is
blocking (see Section 4.1.1), cycles introduced by improper
linearization cause deadlock as shown in the example in
Figure 10(b). For this reason, sub-graphs are not linearized
independently. The entire graph is linearized at once placing
instruction in the corresponding core/tile sequence to ensure
a globally consistent linearization order.

5.4 Register Allocation
The final step in the compilation is register allocation. Recall
that a core has three sets of registers: XbarIn, XbarOut, and
general purpose. XbarIn (XbarOut) registers can be written
(read) by any non-MVM instruction but can only be read
(written) by MVM instructions. General purpose registers
can be read and written by any non-MVM instructions. Live-
ness analysis is performed on each of these sets of registers
separately. Conflicting live ranges in XbarIn and XbarOut
registers result in spilling to general purpose registers via
copy instructions. Conflicting live ranges in general purpose
registers result in spilling to shared memory via load/store
instructions.

5.5 Summary
In summary, the PUMA compiler provides a high-level pro-
gramming interface and performs graph partitioning, instruc-
tion scheduling, and register allocation to generate low-level
assembly. Instruction scheduling aims at reducing register
pressure, MVM colescing, and avoiding deadlock.

6 Evaluation Methodology
6.1 PUMAsim
We have implemented a detailed architectural simulator
(PUMAsim) to evaluate the performance and energy con-
sumption of PUMA. PUMAsim runs applications compiled
to the PUMA ISA and provides detailed traces of execu-
tion. The simulator incorporates functionality, timing, and

Table 3. PUMA Hardware Characteristics
PUMA Tile at 1GHz on 32nm Technology node

Component Power (mW) Area (mm2) Parameter Specification
Control Pipeline 0.25 0.0033 # stages 3
Instruction Memory 1.52 0.0031 capacity 4KB
Register File 0.477 0.00192 capacity 1KB
MVMU 19.09 0.012 # per core 2

dimensions 128×128
VFU 1.90 0.004 width 1
SFU 0.055 0.0006 - -
Core 42.37 0.036 # per tile 8
Tile Control Unit 0.5 0.00145 - -
Tile Instruction Memory 1.91 0.0054 capacity 8KB
Tile Data Memory 17.66 0.086 capacity 64KB

technology eDRAM
Tile Memory Bus 7 0.090 width 384 bits
Tile Attribute Memory 2.77 0.012 # entries 32K

technology eDRAM
Tile Receive Buffer 9.14 0.0044 # fifos 16

fifo depth 2
Tile 373.8 0.479 # per node 138
On-chip Network 570.63 1.622 flit_size 32

ports 4
conc 4

Node 62.5K 90.638 - -
Off-chip Network 10.4K 22.88 type HyperTransport
(per node) link bandwidth 6.4 GB/sec

Table 4. Benchmarking Platforms
Name Platform Characteristics
Haswell Intel Xeon E5-2650v3, 10-cores per socket, Dual Socket, 128GB DDR4
Skylake Intel Xeon 8180, 28-cores per socket, Dual Socket, 64GB DDR4
Kepler Nvidia Tesla K80, 2496 CUDA Cores, Dual GPUs (only 1 used), 12GB GDDR5
Maxwell Nvidia Geforce TitanX, 3072 CUDA Cores, 12GB GDDR5
Pascal Nvidia Tesla P100, 3584 CUDA Cores, 16GB HBM2

power models of all system components. The datapath for
the PUMA core and tile was designed at Register-Transfer
Level (RTL) in Verilog HDL and mapped to IBM 45nm SOI
technology using Synopsys Design Compiler whichwas used
to measure the area and power consumption. Subsequently,
these area and power numbers were added to PUMAsim for
system-level evaluations of workloads. For fair comparison
with other application-specific accelerators, the datapath
energy numbers have been scaled to the 32nm technology
node. Memory modules are modelled in Cacti 6.0 [76] to
estimate the area, power, and latency. The on-chip-network
is modelled using the cycle-level Booksim 2.0 interconnec-
tion network simulator [59] and Orion 3.0 [63] for energy
and area models. We use a chip-to-chip interconnect model
similar to DaDianNao’s [20] which has also been adopted by
other accelerators. The MVMU power and area models are
adapted from ISAAC [95]. The memristors have a resistance
range of 100kΩ − 1MΩ and read voltage of 0.5V. The ADC
is based on the Successive Approximation Register (SAR)
design, and its area and power were obtained from the ADC
survey and analysis [77, 107].

In the present study, we do not compromise ML accuracy
as we conservatively choose 2-bit memristor crossbar cells.
Note that laboratory demonstrations have shown up to 6-bit
capabilities [52]. We use 16 bit fixed-point precision that pro-
vides very high accuracy in inference applications [20, 95].
Table 3 shows the PUMA configuration used in our analysis
and lists the area-energy breakdown of PUMA components.

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

723

Table 5. Benchmarks
DNN Type Application DNN Name # FC Layers # LSTM Layers # Conv Layers # Parameters Non-linear Function Sequence Size

MLP Object MLPL4 4 - - 5M Sigmoid -
Detection MLPL5 5 - - 21M Sigmoid -

Deep Neural Machine NMTL3 1 6 (3 Enc.,3 Dec., 1024 cells) - 91M Signmod, Tanh 50
LSTM Translation NMTL5 1 10 (5 Enc.,5 Dec., 1024 cells) - 125M Signmod, Tanh 50
Wide Language BigLSTM 1 2 (8192 cell, 1024 proj) - 856M Signmod, Tanh, LogSoftMax 50
LSTM Modelling LSTM-2048 1 1 (8192 cell, 2048 proj) - 554M Sigmoid, Tanh, LogSoftMax 50
CNN Image Vgg16 3 - 13 136M ReLU -

Recognition Vgg19 3 - 16 141M ReLU -

 0.10
 1.00

 10.00
 100.00

 1,000.00
 10,000.00

 100,000.00
 1,000,000.00

 10,000,000.00

L4 L5 L3 L5 Big

LSTM

LSTM-

2048

Vgg16 Vgg19

MLP Deep LSTM Wide LSTM CNN

N
o

r
m

a
li

z
e
d

 E
n

e
r
g

y

(l
o

w
er

 i
s

b
et

te
r)

Haswell

Skylake

Kepler

Maxwell

Pascal

PUMA

(b) Inference latency normalized to PUMA(a) Inference energy normalized to PUMA

 0.10
 1.00

 10.00
 100.00

 1,000.00
 10,000.00

 100,000.00

L4 L5 L3 L5 Big

LSTM

LSTM-

2048

Vgg16 Vgg19

MLP Deep LSTM Wide LSTM CNNN
o

r
m

a
li

z
e
d

 L
a

te
n

c
y

(l
o

w
er

 i
s

b
et

te
r)

 0.01
 0.10
 1.00

 10.00
 100.00

 1,000.00
 10,000.00

 100,000.00
 1,000,000.00

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

L4 L5 L3 L5 BigLSTM LSTM-2048 Vgg16 Vgg19

MLP Deep LSTM Wide LSTM CNNN
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(h
ig

he
r i

s b
et

te
r)

 0.10
 1.00

 10.00
 100.00

 1,000.00
 10,000.00

 100,000.00
 1,000,000.00

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

B1
6

B3
2

B6
4

B1
28

L4 L5 L3 L5 BigLSTM LSTM-2048 Vgg16 Vgg19

MLP Deep LSTM Wide LSTM CNNN
or

m
al

iz
ed

 E
ne

rg
y

Sa
vi

ng
s

(h
ig

he
r i

s b
et

te
r)

(d) Batch throughput normalized to Haswell

(c) Batch energy savings compared to Haswell

Figure 11. Energy and Latency Results

6.2 System and Workloads
We choose popular server grade CPUs and GPUs (listed in Ta-
ble 4), Google TPU [61] (CMOS-based ASIC) and ISAAC [95]
(application specific memristor-based accelerator) for evalu-
ating PUMA. To measure power consumption of CPUs and
GPUs, we used management tools such as board manage-
ment control (BMC) and nvidia-smi respectively. For GPUs,
we do not include full system power, just the board/device
power. We run multiple iterations of the benchmarks on the
GPU, discarding the longer warmup iterations and reporting
results from the faster and more stable iterations.

Torch7 [29] was used to execute the ML models for CPUs
and GPUs. The PUMA compiler was used to compile models
for PUMA. These models used are listed in Table 5.

7 Results
7.1 Inference Energy
Figure 11(a) shows PUMA inference energy compared to
other platforms. PUMA achieves massive energy reduction
across all benchmarks for all platforms. Energy improve-
ments come from two sources: lower MVM compute energy

from crossbars and lower data movement energy by avoiding
weight data movement.

CNNs show the least energy reduction over CMOS archi-
tectures (11.7×-13.0× over Pascal). Recall that CNNs have a
lot of weight reuse because of the sliding window computa-
tion (discussed in Section 2.3.1). Hence, CMOS architectures
can amortize DRAM accesses of weights across multiple com-
putations. For this reason, PUMA’s energy savings in CNNs
come primarily from the use of crossbars for energy efficient
MVM computation.

MLPs and LSTMs have little or no weight reuse (discussed
in Section 2). Therefore, in addition to efficient MVM compu-
tation, PUMA has the added advantage of eliminating weight
data movement. For this reason, we see much better energy
reductions for MLPs (30.2×-80.1× over Pascal), Deep LSTMs
(2,302×-2,446× over Pascal), and Wide LSTMs (758×-1336×
over Pascal).

LSTMs (both deep and wide) show better reductions than
MLPs because they have much larger model sizes (see #
Parameters in Table 5). As model grows in size, weight data
grows atO(n2) and input data grows atO(n). For this reason,
we see an increasing disparity between CMOS architectures

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

724

which move both weight and input data, and PUMA which
only moves input data.
Wide LSTMs have few layers (1-2) with very large ma-

trices, whereas Deep LSTMs have many layers (6-10) with
smaller matrices. The large matrices in Wide LSTMs span
mutiple PUMA cores/tiles to compute one logical MVM, in-
curring higher intra-layer data movement overheads. Hence,
Deep LSTMs show higher energy benefits than Wide LSTMs.

7.2 Inference Latency
Figure 11(b) shows PUMA inference latency compared to
other evaluated platforms. PUMA achieves latency improve-
ments across all platforms except MLPs on some GPUs. La-
tency improvements come from three sources: lower MVM
compute latency from crossbars, no weight data access la-
tency, and spatial architecture pipelining which exploits
inter-layer parallelism.

CNNs show the least latency improvement over CMOS ar-
chitectures (2.73×-2.99× over Pascal). Since CNNs are compute-
bound, CMOS architectures can hide the data access latency.
Thus, PUMA’s primary latency improvements in CNNs come
from the use of crossbars for low-latency MVM computation
and spatial architecture pipelining.

LSTMs on the other hand are memory-bound. PUMA has
the added advantage of eliminating weight data access la-
tency in addition to low-latency MVM computation. For this
reason, we see much better latency improvements for Deep
LSTMs (41.6×-66.0× over Pascal) and Wide LSTMs (4.70×-
5.24× over Pascal) than we see for CNNs. In comparing Deep
and Wide LSTMs, Deep LSTMs have more layers than Wide
LSTMs, hence more inter-layer parallelism to exploit spatial
architecture pipelining (see #LSTM Layers in Table 5). More-
over, Deep LSTMs have less intra-layer communication than
Wide LSTMs, hence lower data access latency.

MLPs show slowdown compared to some GPU datapoints
(0.24×-0.40× compared to Pascal). The reason is that despite
MLPs being memory-bound, the sizes of MLPs are typically
small enough. Hence, the memory bandwidth bottleneck is
not as pronounced, so they perform fairly well on GPUs.
Moreover, MLPs have no inter-layer parallelism so they do
not exploit spatial architecture pipelining (Section 4.1.2). Nev-
ertheless, PUMA’s order of magnitude energy reduction is
still beneficial for MLPs in energy-constrained environments.

7.3 Batch Throughput and Energy
Inference applications are not usually intended for large
batch sizes due to real-time application requirements. Never-
theless, CMOS architectures perform well with large batch
sizes because of the weight reuse that data-batching ex-
poses. For this reason, we compare PUMA’s batch energy
and throughput with the other platforms in Figure 11(c) and
(d) respectively. Batch sizes of 16, 32, 64, and 128 are used.

Table 6. Comparison with ML Accelerators
Platform PUMA TPU [61] ISAAC [95]
Year 2018 2017 2016
Technology CMOS(32nm)-Memristive CMOS(28nm) CMOS(32nm)-Memristive
Clock (MHz) 1000 700 1200
Precision 16-bit fixed point 16-bit fixed point 16-bit fixed point
Area (mm2) 90.6 330* 85.4
Power (W) 62.5 45 65.8
Peak Throughput (TOPS/s†) 52.31 23‡ 69.53
Peak AE (TOPS/s/mm2) 0.58 0.07 0.82
Peak PE (TOPS/s/W) 0.84 0.51 1.06
Best AE - MLP 0.58 0.009 -
Best AE - LSTM 0.58 0.003 -
Best AE - CNN 0.58 0.06 0.82
Best PE - MLP 0.84 0.07 -
Best PE - LSTM 0.84 0.02 -
Best PE - CNN 0.84 0.48 1.06
* Less than or equal to half of Haswell’s die area [61]
† Tera operations per second (multiply and add are counted as two separate operations)
‡ 92 TOPS for 8-bit arithmetic, scaled by 4 for 16-bit arithmetic [61]

Table 7. Programmability Comparison with ISAAC
Platform PUMA ISAAC

Architecture
Instruction execution pipeline, Application specific state machine

flexible inter-core synchronization
Vector Functional Unit, ROM-Embedded RAM Sigmoid unit

Programmability Compiler-generated instructions (per tile & core) Manually configured state machine (per tile)

Workloads CNN, MLP, LSTM, RNN, GAN, BM, RBM, CNN
SVM, Linear Regression, Logistic Regression

PUMA continues to have superior energy efficiency across
all benchmarks and batch sizes. It also delivers better through-
put in most cases, except when compared to Pascal on MLPs
and Wide LSTMs. The benefits slightly decrease with larger
batches because they expose more weight reuse which bene-
fits CMOS architectures while PUMA’s efficiency remains
constant across batch sizes. Nevertheless, PUMA continues
to perform well even when the batch size is very large.

7.4 Comparison with ML Accelerators
7.4.1 Google TPU
Table 6 compares key technology features and efficiency met-
rics for TPU [61] and PUMA. PUMA has 8.3× higher peak
area-efficiency (TOPS/s/mm2) than TPU. Since PUMA does
not rely on weight reuse to improve throughput like CMOS
architectures do, its area-efficiency remains constant across
workloads and batch sizes. On the other hand, TPU’s peak
throughput is almost an order of magnitude lower for appli-
cations with low data reuse due to its inability to amortize
weight data movement. PUMA has 64.4×, 193×, and 9.7×
higher area-efficiency than TPU for MLP, LSTM, and CNN
respectively for the best TPU batch size.

PUMAhas 1.65× higher peak power-efficiency (TOPS/s/W)
than TPU,with similar trends and reasoning as area-efficiency
for specific workloads. We expect PUMA’s power-efficiency
advantage over TPU to grow by over 3×, as silicon processes
scale from 32nm to 7nm and 5nm. Thanks to PUMA’s higher
peak throughput, we can follow the power reduction scaling
curve at constant performance. Conversely, to narrow the
performance gap, TPU would follow a scaling curve closer to
the performance increase curve at constant power. Note that
the former scaling curve is much faster (up to ∼40% power
reduction per silicon node compared with∼20% performance
increase). Further, ADC power efficiency has also been fol-
lowing similar and very fast scaling trend with ∼2× power
reduction per 1.8 years at the same sampling rate [78].

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

725

0%

2%

4%

6%

8%

10%

0

200

400

600

800

1000

0.25 1 4 16

%
 A

cc
e

ss
e

s
fr

o
m

Sp
ill

e
d

 R
e

gi
st

e
rs

Register File Size

Area Efficiency
Power Efficiency

MLP-L4
MLP-L5
NMT-L3
NMT-L5
BigLSTM
LSTM-2048
Vgg16
Vgg19

0

200

400

600

800

1000

64 128 256

A
re

a
&

 P
o

w
e

r
Ef

fi
ci

e
n

cy

MVMU Dimension

1 4 16 64

MVMUs per Core

1 4 16 64

VFU Width

1 4 8 16

Cores per Tile R
eg

is
te

r
Sp

ill
in

g

× (XbarIn + XbarOut) registers

Figure 12. Design Space Exploration: Tile Area Efficiency in GOPS/s/mm2 and Tile Power Efficiency in GOPS/s/W

Table 8. Evaluation of Optimizations

Workload

Input Shared Graph Register MVM
Shuffling Memory Sizing Partitioning Pressure Coalescing

(energy reduction, (energy reduction, (energy reduction, (% accesses from (latency reduction,
lower is better) lower is better) lower is better) spilled registers) lower is better)

MLPL4 - 0.70× 0.81× 0% 0.60×
MLPL5 - 0.66× 0.79× 0% 0.66×
NMTL3 - 0.65× 0.65× 0% 0.63×
NMTL5 - 0.63× 0.63× 0% 0.63×
BigLSTM - 0.58× 0.61× 0% 0.76×
LSTM-2048 - 0.58× 0.62× 0% 0.84×
Vgg16 0.84× 0.75× 0.37× 1.96% 0.69×
Vgg19 0.85× 0.75× 0.43× 1.71% 0.71×

7.4.2 ISAAC
Table 6 compares the peak area and power efficiency of
PUMA with ISAAC [95], a memristor-based accelerator cus-
tomized for CNNs. PUMA has 20.7% lower power efficiency
and 29.2% lower area efficiency than ISAAC due to the over-
head of programmability. Table 7 compares the programma-
bility of PUMA and ISAAC.

7.4.3 PUMA with Digital MVMUs
To demonstrate the importance of analog computing for
MVMU efficiency, we compare PUMA with a hypothetical
equivalent that uses digital MVMUs. A memristive 128×128
MVMU performs 16,384MACs in 2304 ns consuming 43.97 nJ.
A digital MVMU would require 8.97× more area to achieve
the same latency and would consume 4.17× more energy.
Using a digital MVMU would increase the total chip area
of the accelerator by 4.93× for the same performance and
would consume 6.76× energy (factoring in data movement
energy due to increased area).

7.4.4 Tensor Cores
Nvidia V100 GPUs with tensor cores (FP16) can be up to
6× more energy-efficient (architecture, tensor cores, and
half-precision) than Pascal GPUs. Therefore, PUMA can still
achieve energy gains over GPUs with tensor cores, despite
the technology difference (PUMA: 32nm, V100: 12nm).

7.5 Evaluation of Optimizations
Table 8 shows an evaluation of various optimizations de-
scribed throughout the paper. Input shuffling reduces en-
ergy consumed by data movement within a core by leverag-
ing input reuse in CNNs. Shared memory sizing keeps the
sharedmemory small by leveraging inter-core/tile pipelining.
The baseline here, sizes the shared memory with what would
be needed without pipelining, which is 1×, 50.51×, 21.61×,
and 15.91× larger for MLPs, Deep LSTMs, Wide LSTMs, and
CNNs respectively. Note that MLP does not benefit from
inter-tile pipelining because it does not exhibit any weight

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6In
fe

re
n

ce
 A

cc
u

ra
cy

Memristor Precision (bits per cell)

σN = 0

σN = 0.1

σN = 0.2

σN = 0.3

Figure 13. Inference Accuracy

reuse (Section 2.1). Graph partitioning (compared to a
baseline that partitions the graph randomly) reduces the
number of loads, stores, sends, and receives, hence the over-
all energy. Register pressure is kept low by the compiler
with little or no accesses from spilled registers across bench-
marks.MVM coalescing runs MVMUs in parallel within a
core which reduces latency.

7.6 Design Space Exploration
Figure 12 shows a PUMA tile’s peak area and power effi-
ciency swept across multiple design space parameters. For
each sweep, all other parameters are kept at the sweetspot
(PUMA configuration with maximum efficiency). Efficiency
is measured using a synthetic benchmark: an MVM opera-
tion on each MVMU, followed by a VFU operation, then a
ROM-Embedded RAM look-up.
Increasing theMVMU dimension increases the number

of crossbar multiply-add operations quadratically and the
number of peripherals linearly resulting in more amortiza-
tion of overhead from peripherals. However, larger MVMUs
also require ADCs with higher resolution and ADC over-
head grows non-linearly with resolution, which counter-
balances the amortization. Increasing the #MVMUs per core
increases efficiency because of the high efficiency of memris-
tor crossbars relative to CMOS digital components. However,
with toomanyMVMUs, the VFU becomes a bottleneckwhich
degrades efficiency. Increasing the VFU width degrades ef-
ficiency because of the low efficiency of CMOS relative to
memristor crossbars. However, a VFU that is too narrow
becomes a bottleneck. The sweetspot is found at 4 vector
lanes. Increasing the # cores per tile improves efficiency
until shared memory bandwidth becomes the bottleneck.
Increasing the register file size results in lower efficiency,
however a register file that is too small results in too many
register spills.

Figure 13 shows PUMA’s inference accuracy for different
memristor bit precision (bits per device) and write noise
levels (σN). Higher precision can lead to larger accuracy

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

726

loss due to the reduction in noise margin. It can be seen
that PUMA with 2-bit memristor performs well even at high
noise levels. Real CMOS hardware follows the σN = 0 noise
level. Further, recent research have explored coding schemes
for reliable memristor computation at high precision [38, 92].

8 Related Work
Sze et al. [103] provide a thorough survey of deep learning
accelerators. In the digital realm, accelerators can be classi-
fied as weight stationary spatial architectures [15, 17, 36, 43,
85, 93], output stationary spatial architectures [33, 47, 86],
spatial architectures with no local reuse [19, 20, 117], and
row stationary spatial architectures [21]. Many designs also
support optimizations and features including weight pruning
and exploiting sparsity [3, 4, 25, 32, 48, 84, 89, 119], reduc-
ing precision [8, 62], stochastic computing [65, 90], layer
fusing [6], meeting QoS/QoR requirements [108], graph tun-
ing [56], and reconfigurable interconnects [68]. Digital accel-
erators have varied in their degree of flexibility, ranging from
custom accelerators specialized for a particular field [14, 79,
101, 114], to accelerators that are fully programmable via an
ISA [61, 71, 72, 105, 119]. FPGAs have also been popular tar-
gets for building accelerators [37, 45, 74, 86, 96, 97, 110, 117].
All these works remain in the digital domain, while PUMA
leverages hybrid digital-analog computing.

Near-memory acceleration for ML has been proposed us-
ing DRAM [42, 64, 70] and SRAM [111, 118]. PUMA uses
non-volatile memristive crossbars for near-memory acceler-
ation.

Many machine learning accelerators have been proposed
that leverage memristor crossbars [9, 10, 12, 22, 23, 53, 58, 66,
73, 88, 95, 100]. These accelerators have been demonstrated
on several types of workloads including BSBs [53], MLPs [22,
39, 73, 88], SNNs [9, 66], BMs [12], and CNNs [22, 23, 95, 100,
109]. Some accelerators support inference only [9, 23, 53, 73,
88, 95] while others also support training [12, 22, 66, 100]. Ji
et al. [57, 58] transforms neural networks to configure such
accelerators. These accelerators vary in flexibility, but even
the most flexible rely on state machine configuration and
have only been demonstrated on a few types of workloads.
PUMA is the first memristor-based accelerator for machine
learning inference that is ISA-programmable and general-
purpose.

Fujiki et al. [40] propose an ISA-programmable memristor-
based accelerator. Their accelerator is a data-parallel acceler-
ator whereas PUMA is a data-flow accelerator with more ca-
pability for producer-consumer synchronization. Moreover,
their accelerator optimizes crossbars for vector operations in
general-purpose workloads whereas PUMA optimizes cross-
bars for MVM operations prevalent in machine learning and
uses digital VFUs for vector operations rather than cross-
bars.

Chung et al. [24] propose Brainwave, which is a spatial
accelerator built with FPGAs. Compared to Brainwave, a
PUMA core performs 0.26 million 16-bit ops, equivalent to
1.04 million 8-bit ops, per coalesced MVM instruction. A
Brainwave NPU performs 1.3million 8-bit ops per instruction.
Therefore, PUMA and Brainwave have comparable control
granularity while PUMA has 40.8x higher storage-density
(Brainwave Stratix10 estimate).

Memristors have also been proposed for building byte-
addressable non-volatile memories. There have been vari-
ous works centered around system support for non-volatile
memory, including file systems [30], memory allocators [11,
83], programming models [16, 27, 106], durable data struc-
tures [31, 55, 113], representation of pointers [18, 28, 34, 35],
and architecture support [60, 80, 82, 99].

There have been concerns in the community about mem-
ristor manufacturability. We distinguish between medium-
density embedded memristor applications and high-density
storage-class memory (SCM). Memristors in PUMA use 1T1R
configuration which have been shown to have good manu-
facturability [50]. They are very different from SCM, where
the selector transistor may be replaced with an in-line two-
terminal selector device for higher density which compli-
cates manufacturability. Panasonic formed a joined venture
with UMC foundry in 2017 to enable integration of memris-
tors to UMC 40nm CMOS process with first samples planned
in 2018 [115]. TSMC also completed development of their
own memristor technology that entered risk production in
40nm ULP CMOS process node at the end of 2017 [1].

9 Conclusion
PUMA is the first ISA-programmable accelerator for ML in-
ference that uses hybrid CMOS-memristor technology. It en-
hances memristor crossbars with general purpose execution
units carefully designed to maintain crossbar area/energy
efficiency and storage density. Our accelerator design comes
with a complete compiler to transform high-level code to
PUMA ISA and a detailed simulator for estimating perfor-
mance and energy consumption. Our evaluations show that
PUMA can achieve significant improvements compared to
state-of-the-art CPUs, GPUs, and ASICs for ML acceleration.

Acknowledgments
This work is supported by Hewlett Packard Labs and the US
Department of Energy (DOE) under Cooperative Agreement
DE-SC0012199, the Blackcomb 2 Project. In addition, John
Paul Strachan acknowledges support in part from the Intel-
ligence Advanced Research Projects Activity (IARPA) via
contract number 2017-17013000002. This work was also sup-
ported in part by the Center for Brain-inspired Computing
(C-BRIC), one of six centers in JUMP, a DARPA sponsored
Semiconductor Research Corporation (SRC) program.

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

727

References
[1] 2018. TSMC Annual Report 2017. TSMC (Mar 2018).
[2] Alan Agresti. 2002. Logistic regression. Wiley Online Library.
[3] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard

O’Leary, Roman Genov, and Andreas Moshovos. 2017. Bit-pragmatic
Deep Neural Network Computing. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-50
’17). ACM, New York, NY, USA, 382–394.

[4] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt,
Natalie Enright Jerger, and Andreas Moshovos. 2016. Cnvlutin:
ineffectual-neuron-free deep neural network computing. In Com-
puter Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International
Symposium on. IEEE, 1–13.

[5] Fabien Alibart, Elham Zamanidoost, and Dmitri B Strukov. 2013.
Pattern classification by memristive crossbar circuits using ex situ
and in situ training. Nature communications 4 (2013).

[6] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016.
Fused-layer CNN accelerators. In Microarchitecture (MICRO), 2016
49th Annual IEEE/ACM International Symposium on. IEEE, 1–12.

[7] Joao Ambrosi, Aayush Ankit, Rodrigo Antunes, Sai Rahul Chala-
malasetti, Soumitra Chatterjee, Izzat El Hajj, Guilherme Fachini,
Paolo Faraboschi, Martin Foltin, Sitao Huang, Wenmei Hwu, Gustavo
Knuppe, Sunil Vishwanathpur Lakshminarasimha, Dejan Milojicic,
Mohan Parthasarathy, Filipe Ribeiro, Lucas Rosa, Kaushik Roy, Plinio
Silveira, and John Paul Strachan. 2018. Hardware-Software Co-Design
for an Analog-Digital Accelerator for Machine Learning. In Rebooting
Computing (ICRC), 2018 IEEE International Conference on. IEEE.

[8] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. 2017.
YodaNN: An Architecture for Ultra-Low Power Binary-Weight CNN
Acceleration. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (2017).

[9] Aayush Ankit, Abhronil Sengupta, Priyadarshini Panda, and Kaushik
Roy. 2017. RESPARC: A Reconfigurable and Energy-Efficient Archi-
tecture withMemristive Crossbars for Deep Spiking Neural Networks.
In Proceedings of the 54th Annual Design Automation Conference 2017.
ACM, 27.

[10] Aayush Ankit, Abhronil Sengupta, and Kaushik Roy. 2017. Tranns-
former: Neural network transformation formemristive crossbar based
neuromorphic system design. In Proceedings of the 36th International
Conference on Computer-Aided Design. IEEE Press, 533–540.

[11] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. 2016.
Makalu: Fast Recoverable Allocation of Non-volatile Memory. In
Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016). ACM, New York, NY, USA, 677–694.

[12] Mahdi Nazm Bojnordi and Engin Ipek. 2016. Memristive boltzmann
machine: A hardware accelerator for combinatorial optimization and
deep learning. In High Performance Computer Architecture (HPCA),
2016 IEEE International Symposium on. IEEE, 1–13.

[13] G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat,
R. S. Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, B. N. Kurdi,
and H. Hwang. 2015. Experimental Demonstration and Tolerancing
of a Large-Scale Neural Network (165 000 Synapses) Using Phase-
Change Memory as the Synaptic Weight Element. IEEE Transactions
on Electron Devices 62, 11 (Nov 2015), 3498–3507.

[14] Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai
Qian, Massoud Pedram, and Yanzhi Wang. 2018. VIBNN: Hardware
Acceleration of Bayesian Neural Networks. In Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’18). ACM,
New York, NY, USA, 476–488.

[15] Lukas Cavigelli, David Gschwend, Christoph Mayer, Samuel Willi,
Beat Muheim, and Luca Benini. 2015. Origami: A Convolutional
Network Accelerator. In Proceedings of the 25th Edition on Great Lakes

Symposium on VLSI (GLSVLSI ’15). ACM, New York, NY, USA, 6.
[16] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.

Atlas: Leveraging Locks for Non-volatile Memory Consistency. In
Proceedings of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages & Applications (OOPSLA ’14).
ACM, New York, NY, USA, 433–452.

[17] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Sri-
hari Cadambi. 2010. A Dynamically Configurable Coprocessor for
Convolutional Neural Networks. In Proceedings of the 37th Annual
International Symposium on Computer Architecture (ISCA ’10). ACM,
New York, NY, USA, 247–257.

[18] Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng Shen, and
Youfeng Wu. 2017. Efficient support of position independence on
non-volatile memory. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 191–203.

[19] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,
Yunji Chen, and Olivier Temam. 2014. DianNao: A Small-footprint
High-throughput Accelerator for Ubiquitous Machine-learning. In
Proceedings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS ’14).
ACM, 269–284.

[20] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,
Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. Da-
diannao: A machine-learning supercomputer. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 609–622.

[21] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial
architecture for energy-efficient dataflow for convolutional neural
networks. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd An-
nual International Symposium on. IEEE, 367–379.

[22] Ming Cheng, Lixue Xia, Zhenhua Zhu, Yi Cai, Yuan Xie, YuWang, and
Huazhong Yang. 2017. TIME: A Training-in-memory Architecture
for Memristor-based Deep Neural Networks. In Proceedings of the
54th Annual Design Automation Conference 2017. ACM, 26.

[23] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan
Liu, Yu Wang, and Yuan Xie. 2016. Prime: A novel processing-in-
memory architecture for neural network computation in reram-based
main memory. In Proceedings of the 43rd International Symposium on
Computer Architecture. IEEE Press, 27–39.

[24] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Al-
kalay, Michael Haselman, et al. 2018. Serving DNNs in Real Time at
Datacenter Scale with Project Brainwave. IEEE Micro 38, 2 (2018).

[25] Jaeyong Chung and Taehwan Shin. 2016. Simplifying deep neural
networks for neuromorphic architectures. In Design Automation Con-
ference (DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 1–6.

[26] Dan Claudiu Cireşan, Ueli Meier, LucaMaria Gambardella, and Jürgen
Schmidhuber. 2010. Deep, big, simple neural nets for handwritten
digit recognition. Neural computation 22, 12 (2010), 3207–3220.

[27] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
Making Persistent Objects Fast and Safe with Next-generation, Non-
volatile Memories. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS XVI). ACM, New York, NY, USA, 105–118.

[28] Nachshon Cohen, David T. Aksun, and James R. Larus. 2018. Object-
oriented Recovery for Non-volatile Memory. Proc. ACM Program.
Lang. 2, OOPSLA, Article 153 (Oct. 2018), 22 pages.

[29] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011.
Torch7: A matlab-like environment for machine learning. In BigLearn,
NIPS Workshop.

[30] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
through byte-addressable, persistent memory. In Proceedings of the

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

728

ACM SIGOPS 22nd symposium on Operating systems principles. ACM.
[31] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G

Khatib, and Cristian Ungureanu. 2016. Revisiting hash table design
for phase change memory. ACM SIGOPS Operating Systems Review
49, 2 (2016), 18–26.

[32] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei
Zhuo, Chao Wang, Xuehai Qian, Yu Bai, Geng Yuan, Xiaolong Ma,
Yipeng Zhang, Jian Tang, Qinru Qiu, Xue Lin, and Bo Yuan. 2017.
CirCNN: Accelerating and Compressing DeepNeural Networks Using
Block-circulant Weight Matrices. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-50
’17). ACM, New York, NY, USA, 395–408.

[33] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDian-
Nao: Shifting Vision Processing Closer to the Sensor. In Proceedings of
the 42Nd Annual International Symposium on Computer Architecture
(ISCA ’15). ACM, New York, NY, USA, 92–104.

[34] Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu.
2017. SAVI Objects: Sharing and Virtuality Incorporated. Proc. ACM
Program. Lang. 1, OOPSLA, Article 45 (2017), 24 pages.

[35] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milojicic,
Reto Achermann, Paolo Faraboschi, Wen-mei Hwu, Timothy Roscoe,
and Karsten Schwan. 2016. SpaceJMP: Programming with Multiple
Virtual Address Spaces. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’16). ACM, New York, NY, USA, 353–368.

[36] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culur-
ciello. 2010. Hardware accelerated convolutional neural networks
for synthetic vision systems. In Proceedings of 2010 IEEE International
Symposium on Circuits and Systems. 257–260.

[37] Clément Farabet, Cyril Poulet, Jefferson Y Han, and Yann LeCun. 2009.
Cnp: An fpga-based processor for convolutional networks. In Field
Programmable Logic and Applications, 2009. FPL 2009. International
Conference on. IEEE, 32–37.

[38] Ben Feinberg, Shibo Wang, and Engin Ipek. 2018. Making memristive
neural network accelerators reliable. In 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE,
52–65.

[39] B. Feinberg, S. Wang, and E. Ipek. 2018. Making Memristive Neural
Network Accelerators Reliable. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA).

[40] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2018. In-Memory
Data Parallel Processor. In Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 1–14.

[41] Terrence S Furey, Nello Cristianini, Nigel Duffy, David W Bednarski,
Michel Schummer, and David Haussler. 2000. Support vector machine
classification and validation of cancer tissue samples usingmicroarray
expression data. Bioinformatics 16, 10 (2000), 906–914.

[42] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos
Kozyrakis. 2017. TETRIS: Scalable and Efficient Neural Network
Acceleration with 3D Memory. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 751–764.

[43] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and
Eugenio Culurciello. 2014. A 240 g-ops/s mobile coprocessor for deep
neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. 682–687.

[44] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
2014. Generative adversarial nets. In Advances in neural information
processing systems. 2672–2680.

[45] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong
Yang. 2017. A Survey of FPGA Based Neural Network Accelerator.

arXiv preprint arXiv:1712.08934 (2017).
[46] Xinjie Guo, F Merrikh Bayat, M Bavandpour, M Klachko, MR Mah-

moodi, M Prezioso, KK Likharev, and DB Strukov. 2017. Fast, energy-
efficient, robust, and reproducible mixed-signal neuromorphic classi-
fier based on embedded NOR flash memory technology. In Electron
Devices Meeting (IEDM), 2017 IEEE International. IEEE, 6–5.

[47] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. 2015. Deep learning with limited numerical precision. In
Proceedings of the 32nd International Conference on Machine Learning
(ICML-15). 1737–1746.

[48] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. 2016. EIE: efficient inference engine
on compressed deep neural network. In Proceedings of the 43rd Inter-
national Symposium on Computer Architecture. IEEE Press, 243–254.

[49] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learn-
ing both weights and connections for efficient neural network. In
Advances in neural information processing systems. 1135–1143.

[50] Yukio Hayakawa, Atsushi Himeno, Ryutaro Yasuhara, W Boullart, E
Vecchio, T Vandeweyer, T Witters, D Crotti, M Jurczak, S Fujii, et al.
2015. Highly reliable TaO x ReRAM with centralized filament for
28-nm embedded application. In VLSI Technology (VLSI Technology),
2015 Symposium on. IEEE, T14–T15.

[51] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term
memory. Neural computation 9, 8 (1997), 1735–1780.

[52] Miao Hu, Catherine Graves, Can Li, Yunning Li, Ning Ge, Eric Mont-
gomery, Noraica Davila, Hao Jiang, R. Stanley Williams, J. Joshua
Yang, Qiangfei Xia, and John Paul Strachan. 2018. Memristor-based
analog computation and neural network classification with a dot
product engine. Advanced Materials (2018).

[53] Miao Hu, Hai Li, Qing Wu, and Garrett S. Rose. 2012. Hardware
Realization of BSB Recall Function Using Memristor Crossbar Arrays.
In Proceedings of the 49th Annual Design Automation Conference (DAC
’12). ACM, New York, NY, USA, 498–503.

[54] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M Grafals,
Noraica Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua
Yang, and R Stanley Williams. 2016. Dot-product engine for neu-
romorphic computing: programming 1T1M crossbar to accelerate
matrix-vector multiplication. In Design Automation Conference (DAC),
2016 53nd ACM/EDAC/IEEE. IEEE, 1–6.

[55] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016.
Linearizability of persistent memory objects under a full-system-
crash failure model. In International Symposium on Distributed Com-
puting. Springer, 313–327.

[56] Yu Ji, Youhui Zhang, Wenguang Chen, and Yuan Xie. 2018. Bridge
the Gap Between Neural Networks and Neuromorphic Hardware
with a Neural Network Compiler. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’18). ACM, New York, NY,
USA, 448–460.

[57] Yu Ji, Youhui Zhang, Wenguang Chen, and Yuan Xie. 2018. Bridge
the Gap between Neural Networks and Neuromorphic Hardware
with a Neural Network Compiler. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 448–460.

[58] Yu Ji, YouHui Zhang, ShuangChen Li, Ping Chi, CiHang Jiang, Peng
Qu, Yuan Xie, and WenGuang Chen. 2016. NEUTRAMS: Neural
network transformation and co-design under neuromorphic hard-
ware constraints. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1–13.

[59] Nan Jiang, George Michelogiannakis, Daniel Becker, Brian Towles,
and William J. Dally. 2013. BookSim 2.0 User’s Guide.

[60] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017.
ATOM: Atomic durability in non-volatile memory through hardware
logging. In High Performance Computer Architecture (HPCA), 2017

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

729

IEEE International Symposium on. IEEE, 361–372.
[61] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,
Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew
Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,
Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA ’17). ACM, New York, NY, USA, 1–12.

[62] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt,
and Andreas Moshovos. 2016. Stripes: Bit-serial deep neural network
computing. InMicroarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on. IEEE, 1–12.

[63] A. B. Kahng, B. Lin, and S. Nath. 2012. Comprehensive Modeling
Methodologies for NoC Router Estimation. Technical Report. UCSD.

[64] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and
Saibal Mukhopadhyay. 2016. Neurocube: A programmable digital
neuromorphic architecture with high-density 3D memory. In Com-
puter Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International
Symposium on. IEEE, 380–392.

[65] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun
Lee, and Kiyoung Choi. 2016. Dynamic energy-accuracy trade-off
using stochastic computing in deep neural networks. In Proceedings
of the 53rd Annual Design Automation Conference. ACM, 124.

[66] Yongtae Kim, Yong Zhang, and Peng Li. 2015. A Reconfigurable
Digital Neuromorphic Processor with Memristive Synaptic Crossbar
for Cognitive Computing. J. Emerg. Technol. Comput. Syst. 11, 4,
Article 38 (April 2015), 25 pages.

[67] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Im-
agenet classification with deep convolutional neural networks. In
Advances in neural information processing systems. 1097–1105.

[68] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018.
MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators
via Reconfigurable Interconnects. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’18). ACM, New York, NY,
USA, 461–475.

[69] Dongsoo Lee and Kaushik Roy. 2013. Area efficient ROM-embedded
SRAM cache. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 21, 9 (2013), 1583–1595.

[70] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng,
Bob Brennan, and Yuan Xie. 2017. DRISA: A DRAM-based Reconfig-
urable In-Situ Accelerator. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 288–301.

[71] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou,
Olivier Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015.
PuDianNao: A Polyvalent Machine Learning Accelerator. In Proceed-
ings of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’15).
ACM, New York, NY, USA, 369–381.

[72] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie,
Yunji Chen, and Tianshi Chen. 2016. Cambricon: An instruction set

architecture for neural networks. In Proceedings of the 43rd Interna-
tional Symposium on Computer Architecture. IEEE Press, 393–405.

[73] Xiaoxiao Liu, Mengjie Mao, Beiye Liu, Hai Li, Yiran Chen, Boxun
Li, Yu Wang, Hao Jiang, Mark Barnell, Qing Wu, et al. 2015. RENO:
A high-efficient reconfigurable neuromorphic computing acceler-
ator design. In Design Automation Conference (DAC), 2015 52nd
ACM/EDAC/IEEE. IEEE, 1–6.

[74] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma,
Amir Yazdanbakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. 2016.
Tabla: A unified template-based framework for accelerating statistical
machine learning. InHigh Performance Computer Architecture (HPCA),
2016 IEEE International Symposium on. IEEE, 14–26.

[75] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and
Sanjeev Khudanpur. 2010. Recurrent neural network based language
model. In Eleventh Annual Conference of the International Speech
Communication Association.

[76] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.
Jouppi. 2009. CACTI 6.0: A Tool to Understand Large Caches. Technical
Report. HP Labs, HPL-2009-85.

[77] Boris Murmann. 2011. ADC performance survey 1997-2011.
http://www. stanford. edu/˜ murmann/adcsurvey. html (2011).

[78] Boris Murmann. 2015. The race for the extra decibel: a brief review
of current ADC performance trajectories. IEEE Solid-State Circuits
Magazine 7, 3 (2015), 58–66.

[79] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and
Daniel J Sorin. 2016. The microarchitecture of a real-time robot
motion planning accelerator. In Microarchitecture (MICRO), 2016 49th
Annual IEEE/ACM International Symposium on. IEEE, 1–12.

[80] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris
Volos, and Kimberly Keeton. 2017. An analysis of persistent memory
use with WHISPER. In ACM SIGARCH Computer Architecture News,
Vol. 45. ACM, 135–148.

[81] John Neter, Michael H Kutner, Christopher J Nachtsheim, andWilliam
Wasserman. 1996. Applied linear statistical models. Vol. 4. Irwin
Chicago.

[82] Matheus Almeida Ogleari, Ethan LMiller, and Jishen Zhao. 2018. Steal
but no force: Efficient hardware undo+ redo logging for persistent
memory systems. In High Performance Computer Architecture (HPCA),
2018 IEEE International Symposium on. IEEE, 336–349.

[83] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner,
Thomas Willhalm, and Grégoire Gomes. 2017. Memory manage-
ment techniques for large-scale persistent-main-memory systems.
Proceedings of the VLDB Endowment 10, 11 (2017), 1166–1177.

[84] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer,
Stephen W. Keckler, and William J. Dally. 2017. SCNN: An Accel-
erator for Compressed-sparse Convolutional Neural Networks. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA ’17). ACM, New York, NY, USA, 27–40.

[85] Seongwook Park, Kyeongryeol Bong, Dongjoo Shin, Jinmook Lee,
Sungpill Choi, andHoi-Jun Yoo. 2015. 4.6 A1. 93TOPS/W scalable deep
learning/inference processor with tetra-parallel MIMD architecture
for big-data applications. In Solid-State Circuits Conference-(ISSCC),
2015 IEEE International. IEEE, 1–3.

[86] Maurice Peemen, Arnaud AA Setio, Bart Mesman, and Henk Cor-
poraal. 2013. Memory-centric accelerator design for convolutional
neural networks. In Computer Design (ICCD), 2013 IEEE 31st Interna-
tional Conference on. IEEE, 13–19.

[87] Mirko Prezioso, Farnood Merrikh-Bayat, BD Hoskins, GC Adam,
Konstantin K Likharev, and Dmitri B Strukov. 2015. Training and
operation of an integrated neuromorphic network based on metal-
oxide memristors. Nature 521, 7550 (2015), 61–64.

[88] Shankar Ganesh Ramasubramanian, Rangharajan Venkatesan, Mrig-
ank Sharad, Kaushik Roy, and Anand Raghunathan. 2014. SPINDLE:

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

730

SPINtronic deep learning engine for large-scale neuromorphic com-
puting. In Proceedings of the 2014 international symposium on Low
power electronics and design. ACM, 15–20.

[89] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-
Yeon Wei, and David Brooks. 2016. Minerva: Enabling low-power,
highly-accurate deep neural network accelerators. In Proceedings of
the 43rd International Symposium on Computer Architecture. IEEE
Press, 267–278.

[90] Ao Ren, Zhe Li, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Ji Li, Xuehai
Qian, and Bo Yuan. 2017. Sc-dcnn: Highly-scalable deep convolutional
neural network using stochastic computing. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 405–418.

[91] Paul Resnick and Hal R Varian. 1997. Recommender systems. Com-
mun. ACM 40, 3 (1997), 56–58.

[92] RonM Roth. 2017. Fault-Tolerant Dot-Product Engines. arXiv preprint
arXiv:1708.06892 (2017).

[93] Murugan Sankaradas, Venkata Jakkula, Srihari Cadambi, Srimat
Chakradhar, Igor Durdanovic, Eric Cosatto, and Hans Peter Graf.
2009. A massively parallel coprocessor for convolutional neural net-
works. In Application-specific Systems, Architectures and Processors,
2009. ASAP 2009. 20th IEEE International Conference on. IEEE, 53–60.

[94] Abhronil Sengupta, Yong Shim, and Kaushik Roy. 2016. Proposal for
an all-spin artificial neural network: Emulating neural and synaptic
functionalities through domain wall motion in ferromagnets. IEEE
transactions on biomedical circuits and systems 10, 6 (2016), 1152–1160.

[95] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-
monian, John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek
Srikumar. 2016. ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. In Proceedings of the 43rd
International Symposium on Computer Architecture. IEEE Press.

[96] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.
2016. From high-level deep neural models to FPGAs. InMicroarchitec-
ture (MICRO), 2016 49th Annual IEEE/ACM International Symposium
on. IEEE, 1–12.

[97] Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Maximiz-
ing CNN Accelerator Efficiency Through Resource Partitioning. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA ’17). ACM, New York, NY, USA, 535–547.

[98] Patrick M Sheridan, Fuxi Cai, Chao Du, Wen Ma, Zhengya Zhang,
and Wei D Lu. 2017. Sparse coding with memristor networks. Nature
nanotechnology (2017).

[99] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan
Solihin. 2017. Proteus: A flexible and fast software supported hard-
ware logging approach for NVM. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM.

[100] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer:
A pipelined ReRAM-based accelerator for deep learning. In High
Performance Computer Architecture (HPCA), 2017 IEEE International
Symposium on. IEEE, 541–552.

[101] M. Song, J. Zhang, H. Chen, and T. Li. 2018. Towards Efficient Microar-
chitectural Design for Accelerating Unsupervised GAN-Based Deep
Learning. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 66–77.

[102] Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. 2009. The
recurrent temporal restricted boltzmann machine. In Advances in
Neural Information Processing Systems. 1601–1608.

[103] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. 2017. Ef-
ficient processing of deep neural networks: A tutorial and survey.
arXiv preprint arXiv:1703.09039 (2017).

[104] Toshiyuki Tanaka. 1998. Mean-field theory of Boltzmann machine
learning. Physical Review E 58, 2 (1998), 2302.

[105] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar
Das, Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dhee-
manth Nagaraj, Bharat Kaul, Pradeep Dubey, and Anand Raghu-
nathan. 2017. ScaleDeep: A Scalable Compute Architecture for Learn-
ing and Evaluating Deep Networks. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA ’17). ACM,
New York, NY, USA, 13–26.

[106] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of the
Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XVI). ACM,
New York, NY, USA, 91–104.

[107] Qian Wang, Yongtae Kim, and Peng Li. 2016. Neuromorphic proces-
sors with memristive synapses: Synaptic interface and architectural
exploration. ACM Journal on Emerging Technologies in Computing
Systems (JETC) 12, 4 (2016), 35.

[108] Ying Wang, Huawei Li, and Xiaowei Li. 2017. Real-Time Meets
Approximate Computing: An Elastic CNN Inference Accelerator with
Adaptive Trade-off between QoS and QoR. In Proceedings of the 54th
Annual Design Automation Conference 2017. ACM, 33.

[109] Yandan Wang, Wei Wen, Beiye Liu, Donald Chiarulli, and Hai Helen
Li. 2017. Group Scissor: Scaling Neuromorphic Computing Design
to Large Neural Networks. In Proceedings of the 54th Annual Design
Automation Conference 2017. ACM, 85.

[110] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei Li. 2016.
DeepBurning: automatic generation of FPGA-based learning acceler-
ators for the neural network family. In Design Automation Conference
(DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 1–6.

[111] Zhuo Wang, Robert Schapire, and Naveen Verma. 2014. Error-
adaptive classifier boosting (EACB): Exploiting data-driven training
for highly fault-tolerant hardware. In Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 3884–
3888.

[112] RainerWaser, Regina Dittmann, Georgi Staikov, and Kristof Szot. 2009.
Redox-based resistive switching memories–nanoionic mechanisms,
prospects, and challenges. Advanced materials 21, 25-26 (2009), 2632–
2663.

[113] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost
for NVM-based Single Level Systems.. In FAST, Vol. 15. 167–181.

[114] Reza Yazdani, Albert Segura, Jose-Maria Arnau, and Antonio Gon-
zalez. 2016. An ultra low-power hardware accelerator for automatic
speech recognition. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1–12.

[115] Richard Yu. 2017. Panasonic and UMC Partner for 40nm ReRAM
Process Platform. UMC Press Release (Feb 2017).

[116] Shimeng Yu, Zhiwei Li, Pai-Yu Chen, Huaqiang Wu, Bin Gao, Deli
Wang, Wei Wu, and He Qian. 2016. Binary neural network with
16 Mb RRAM macro chip for classification and online training. In
Electron Devices Meeting (IEDM), 2016 IEEE International. IEEE, 16–2.

[117] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. 2015. Optimizing FPGA-based Accelerator Design for
Deep Convolutional Neural Networks. In Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’15). ACM, New York, NY, USA, 161–170.

[118] Jintao Zhang, Zhuo Wang, and Naveen Verma. 2016. A machine-
learning classifier implemented in a standard 6T SRAM array. In VLSI
Circuits (VLSI-Circuits), 2016 IEEE Symposium on. IEEE, 1–2.

[119] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling
Li, Qi Guo, Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An
accelerator for sparse neural networks. In Microarchitecture (MICRO),
2016 49th Annual IEEE/ACM International Symposium on. IEEE, 1–12.

Session: Machine Learning I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

731

	Abstract
	1 Introduction
	2 Workload Characterization
	2.1 Multi-Layer Perceptron (MLP)
	2.2 Long Short-Term Memory (LSTM)
	2.3 Convolutional Neural Network (CNN)
	2.4 Other ML Workloads

	3 Core Architecture
	3.1 Instruction Execution Pipeline
	3.2 Matrix-Vector Multiplication Unit (MVMU)
	3.3 Vector Functional Unit (VFU)
	3.4 Register File
	3.5 Memory Unit (MU)
	3.6 Static Instruction Usage
	3.7 Summary

	4 Tile Architecture
	4.1 Shared Memory
	4.2 Receive Buffer
	4.3 Summary

	5 Compiler
	5.1 Programming Interface
	5.2 Graph Partitioning
	5.3 Instruction Scheduling
	5.4 Register Allocation
	5.5 Summary

	6 Evaluation Methodology
	6.1 PUMAsim
	6.2 System and Workloads

	7 Results
	7.1 Inference Energy
	7.2 Inference Latency
	7.3 Batch Throughput and Energy
	7.4 Comparison with ML Accelerators
	7.5 Evaluation of Optimizations
	7.6 Design Space Exploration

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

