
⼈⼯智能与芯⽚设计

燕博南
2023秋

22530007

2-Verilog HDL与数字集成电路基础

Peking University

Computer Engineering Basics

• Why AI chip?
• Logic Gates? What is computer hardware?
• Flip-Flops? Registers?
• How computer executes program?
• What is GPU?
• Difference between CPU, FPGA, GPU
• http://www.asic-world.com/verilog/veritut.html

2

A good tutorial for open-source simulation:
全平台轻量开源verilog仿真⼯具iverilog+GTKWave使⽤教程

http://www.asic-world.com/verilog/veritut.html
https://zhuanlan.zhihu.com/p/95081329

Part 1
Verilog HDL grammar, operators, synthesizable design

Peking University

Digital Circuit Design Flow

Logic Synthesis Auto Place &
Route (APR)

HDL
Description

Gate
Netlist

FPGA binary file
Stdcell ASIC Layout

• HDL -> Logic
• Map to target lib (stdcell/LUTs)
• Optimize speed, area

• Create floorplan blocks
• Place cells in blocks
• Route interconnect
• Optimize iteratively

Peking University

Basic Building - Module

In Verilog we design modules, one of which
will be identified as our top-level module.
Modules usually have named, directional
ports (specified as input, output) which are
used to communicate with the module.

• Format: HDL ignores space “ ”, it only
recognize “;”Don’t forget “;” here

Peking University

Wires & Registers

Directly connect!

Wires

Regs

Peking University

Secrets of Wires & Regs

• Without reg declaration, variables are always wires
• Reg can only be output and inside signals

• Assignment:
• Wires can only be changed using assign outside always
• Regs can only be changed inside always

Peking University

Operators
Arithmetic * Multiply

/ Division
+ Add
- Subtract
% Modulus
+ Unary plus
- Unary minus

Logical ! Logical negation
&& Logical and
|| Logical or

Relational > Greater than
< Less than

>= Greater than or equal
<= Less than or equal

Equality == Equality
!= inequality

Shift >> Right shift
<< Left shift

<<<, >>> Arithmetic shift

Reduction ~ Bitwise negation
~& nand
| or
~| nor
^ xor
^~ xnor
~^ xnor

Concatenation { } Concatenation
Conditional ? conditional

What are the difference between (logic) shift
and arithmetic shift?

Peking University

Numeric Constants
Constant values can be specified with a specific width and radix:

123 // default: decimal radix, 32-bit width
’d123 // ’d = decimal radix
’h7B // ’h = hex radix
’o173 // ’o = octal radix
’b111_1011 // ’b = binary radix, “_” are ignored
’hxx // can include X, Z or ? in non-decimal constants
16’d5 // 16-bit constant ‘b0000_0000_0000_0101
11’h1X? // 11-bit constant ‘b001_XXXX_ZZZZ

By default constants are unsigned and will be extended with 0’s on left if need be (if
high-order bit is X or Z, the extended bits will be X or Z too).

You can specify a signed constant as follows:
8’shFF // 8-bit twos-complement representation of -1
To be absolutely clear in your intent it’s usually best to explicitlyspecify the width
and radix.

1’d3 ??

is 1’d1

Peking University

Hierarchy: module instances

• Write all original names (style requirement)
• Connection are concurrently executed

Peking University

Example 1: A counter

What is the timing diagram?

• Beware of “before” & “after” clock edge

Peking University

Verification: Simulation & Testbench
Design: Testbench:

Testbench has no ports

Peking University

Verilog Simulator Workflow

iverilog vvp gtkwave

testbench.v
design.v wave wave.vcd

Runnable commend lines:

executable file result file

Peking University

Verilog Simulator Workflow

iverilog

gtkwaveRunnable command lines:

testbench.v

`include “design.v”
Module testbench;

…

design u1 (…);

endmodule

plot.tcl

No need to drag
outputs every
time after running

A good tutorial:
全平台轻量开源verilog仿真⼯具iverilog+GTKWave使⽤教程

https://zhuanlan.zhihu.com/p/95081329

Peking University

Blocking and Non-blocking

Wrong!

Correct!

Part 2
Finite State Machine

Peking University

Finite State Machine

combinational
logic

Flip-Flops

Q D

CLK

inputs outputs

next_statescurrent_states

CLK

compute
delay

t1

t2

t3

Time point: t1, t2, t3

• Hardware/Circuits

Peking University

Design Methodologies & Templates

Step 1: define states Step 2: draw state-transfer diagram Step 3: fill in the template

State 1

State 2

State 3

State 1

State 2

State 3

A=0

A=0

Output=1

Output=0

Output=1

Verilog HDL Templates for State Machines (intel.com)

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/verilog/ver-state-machine.html

Peking University

FSM Example 1 Passcode Detector

Question: build circuits that outputs 1 pulse, whenever receives “110”

Passcode
Detector001010101101… 000000000010…

Sarah L. Harris, David Harris, in Digital Design and Computer Architecture, 2022

https://www.sciencedirect.com/book/9780128200643/digital-design-and-computer-architecture

Peking University

FSM Example 1 ‒ Step 1 & 2

IDLE

R1

R2

R3

Question: build circuits that outputs 1 pulse, whenever receives “110”

Input: (input, rstb)

(1,1)

(1,1)
(0,1)

(0,1) or (x,0)
(x,0)

(x,0) (1,1)

(1,1)

Got “1”

Got “11”

Got “110”

Peking University

FSM Example 1 ‒ Step 3
Question: build circuits that outputs 1 pulse, whenever
receives “110”

Peking University

FSM Example 2 Auto Chip Testing Environment

Push button to test Function 1, Function 2, Function 3, … in series

FPGA

Testchip

Peking University

FSM Example 2 Step 1&2

STAT_IDLE STAT_FUNC1 STAT_FUNC2 STAT_FUNC3 …

IN=1 IN=1 IN=1

IN=0 IN=0 IN=0 IN=0

Step 3 is so easy… that you can fill it yourself.

Peking University

Another Question

Another Q:
How to generate custom waveform
after entering some state?

Solution: setup an counter variable
Do everything at its pace
[! DO NOT ABUSE. This may cause
large comparing logic.]

Philosophy behind:
Use “state variable” to label timing

Possibility of Nested State Machine!

Peking University

A practical application ‒ Vending Machine

All selections are ￥0.30

The machine make changes

Inputs:
• ￥0.25
• ￥0.10
• ￥0.05

Outputs
• Dispense can
• Dispense ￥0.10
• Dispense ￥0.05

Example from MIT

Peking University

A practical application ‒ Vending Machine

Peking University

A practical application ‒ Vending Machine

Peking University

Discussion

• State Machine vs. AI
• State machines exhaustively cover all cases, which is impossible in

AI agent design.
• State machine is appropriate for small scale designs.
• Nested state machines:
• normally, do not nest inside FSM in >2 folds.
• Otherwise, too complicated timing path dependency.

