
04835370
⼈⼯智能芯⽚设计导论

Fall 2023
Advanced Verilog HDL

燕博南

Outline

• Part 1
• Verilog HDL grammar, operators, synthesizable design

• Part 2
• Finite State Machine
• Pitfalls

• Part 3
• Timing Disaster

HDL: Hardware Description Language
LUT: Look-up table
Stdcell: standard cell Course tool chain: https://zhuanlan.zhihu.com/p/95081329

https://zhuanlan.zhihu.com/p/95081329

Part 1
Verilog HDL grammar, operators, synthesizable design

Digital Circuit Design Flow

• Using Verilog you can write an executable functional specification that •
• documents exact behavior of all the modules and their interfaces
• can be tested & refined until it does what you want
An HDL description is the first step in a mostly automated process to
build an implementation directly from the behavioral model

Logic Synthesis Auto Place &
Route (APR)

HDL
Description

Gate
Netlist

FPGA binary file
Stdcell ASIC Layout

• HDL -> Logic
• Map to target lib (stdcell/LUTs)
• Optimize speed, area

• Create floorplan blocks
• Place cells in blocks
• Route interconnect
• Optimize iteratively

Basic Building - Module

In Verilog we design modules, one of
which will be identified as our top-level
module. Modules usually have named,
directional ports (specified as input,
output) which are used to communicate
with the module.

• Format: HDL ignores space “ ”, it only
recognize “;”

Don’t forget “;” here

Wires & Registers

Directly connect!

Wires

Regs

Secrets of Wires & Regs

• Without “reg” declaration, variables are always wires
• Reg can only be output and inside signals

• Assignment:
• Wires can only be changed using “assign” outside “always”
• Regs can only be changed inside “always”

Operators

Arithmetic * Multiply
/ Division
+ Add
- Subtract
% Modulus
+ Unary plus
- Unary minus

Logical ! Logical negation
&& Logical and
|| Logical or

Relational > Greater than
< Less than

>= Greater than or equal
<= Less than or equal

Equality == Equality
!= inequality

Shift >> Right shift
<< Left shift

<<<, >>> Arithmetic shift

Reduction ~ Bitwise negation
~& nand
| or
~| nor
^ xor
^~ xnor
~^ xnor

Concatenation { } Concatenation
Conditional ? conditional

What are the difference between (logic) shift
and arithmetic shift?

Numeric Constants

Constant values can be specified with a specific width and radix:

123 // default: decimal radix, 32-bit width
’d123 // ’d = decimal radix
’h7B // ’h = hex radix
’o173 // ’o = octal radix
’b111_1011 // ’b = binary radix, “_” are ignored
’hxx // can include X, Z or ? in non-decimal constants
16’d5 // 16-bit constant ‘b0000_0000_0000_0101
11’h1X? // 11-bit constant ‘b001_XXXX_ZZZZ

By default constants are unsigned and will be extended with 0’s on left if need be (if
high-order bit is X or Z, the extended bits will be X or Z too).

You can specify a signed constant as follows:
8’shFF // 8-bit twos-complement representation of -1
To be absolutely clear in your intent it’s usually best to explicitlyspecify the width
and radix.

1’d3 ??

is 1’d1

Hierarchy: module instances

• Write all original names (style requirement)
• Connection are concurrently executed

Example 1: A counter

What is the timing diagram?

• Beware of “before” & “after” clock edge

Verification: Simulation & Testbench
Design: Testbench:

Testbench has no ports

Synthesizable

Not synthesizable

Cannot easily converted to circuits

Initial
#

Blocking and Non-blocking

Wrong!

Correct!

Part 2
Finite State Machine

Finite State Machine

combinational
logic

Flip-Flops

Q D

CLK

inputs outputs

next_statescurrent_states

CLK

compute
delay

t1

t2

t3

Time point: t1, t2, t3

• Hardware/Circuits

Design Methodologies & Templates

Step 1: define states Step 2: draw state-transfer diagram Step 3: fill in the template

State 1

State 2

State 3

State 1

State 2

State 3

A=0

A=0

Output=1

Output=0

Output=1

Verilog HDL Templates for State Machines (intel.com)

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/verilog/ver-state-machine.html

FSM Example 1 Passcode Detector

Question: build circuits that outputs 1 pulse, whenever receives “110”

Passcode
Detector001010101101… 000000000010…

Sarah L. Harris, David Harris, in Digital Design and Computer Architecture, 2022

https://www.sciencedirect.com/book/9780128200643/digital-design-and-computer-architecture

FSM Example 1 – Step 1 & 2

IDLE

R1

R2

R3

Question: build circuits that outputs 1 pulse, whenever receives “110”

Input: (input, rstb)

(1,1)

(1,1)
(0,1)

(0,1) or (x,0)
(x,0)

(x,0) (1,1)

(1,1)

Got “1”

Got “11”

Got “110”

FSM Example 1 – Step 3
Question: build circuits that outputs 1 pulse,
whenever receives “110”

FSM Example 2 Auto Chip Testing Environment

Push button to test Function 1, Function 2, Function 3, … in series

FPGA

Testchip

FSM Example 2 Step 1&2

STAT_IDLE STAT_FUNC1 STAT_FUNC2 STAT_FUNC3 …

IN=1 IN=1 IN=1

IN=0 IN=0 IN=0 IN=0

Step 3 is so easy… that you can fill it yourself.

Another Question

Another Q:
How to generate custom waveform
after entering some state?

Solution: setup an counter variable
Do everything at its pace
[! DO NOT ABUSE. This may cause
large comparing logic.]

Philosophy behind:
Use “state variable” to label timing

Possibility of Nested State Machine!

A practical application – Vending Machine

All selections are ￥0.30

The machine make changes

Inputs:
• ￥0.25
• ￥0.10
• ￥0.05

Outputs
• Dispense can
• Dispense ￥0.10
• Dispense ￥0.05

Example from MIT

A practical application – Vending Machine

A practical application – Vending Machine

Discussion

• State Machine vs. AI
• State machines exhaustively cover all cases, which is impossible in AI

agent design.
• State machine is appropriate for small scale designs.
• Nested state machines:
• normally, do not nest inside FSM in >2 folds.
• Otherwise, too complicated timing path dependency.

Part 3
Timing

Outline

• Central Question: How to make faster computer? (performance)

• Q1: What are the limitations for timing?
• Timing & Delay Mechanism

• Q2: How to Analysis Timing in VLSI?
• Static Timing Analysis (STA)

• Q3: How to improve the design?
• Retiming in HDL

Timing Part: Q1
What are the limitations for timing?

Timing Limitations

Flip-Flops
QD

CLK

Setup
time

Hold
time

D

CLK

Clk-to-Q delay

Q

Flip-Flop (FF) Delay

Combinational Logic (CL) Delay

Input Delay,
Wire Delay,
Clock Skew,
…

Inputs

In-to-Out Delay

Outputs

a1

a2

Other Timing
Constraints:

1 - FF Timing

Flip-Flops

QD

CLK

Data inputs

• Flip-flops need time to a ready & adequate data inputs

Setup time Hold time

D

CLK

C-to-Q delay

Q

2 – Combinational Logic Delay

Application Example:
load with unit “pF”

Things to Do in One Cycle

0

1
0

1 FF
FF

CLK

CLK

Parallel to serial converter circuit

Clk-to-q Mux

a

CLK

clk-to-q

b

a

b

Mux delay
Clock Period T:

T>Time(Clk-to-q)+T(mux)+T(setup)

Some Thoughts on FSM Timing

combinational
logic

Flip-Flops

Q D

CLK

inputs outputs

next_statescurrent_states

What if CLK keep shrinking?

compute
delay

t1

t2

t3

Time point: t1, t2, t3

• Hardware/Circuits

Some Thoughts on FSM Timing

combinational
logic

Flip-Flops

Q D

CLK

inputs outputs

next_statescurrent_states

What is CLK keep shrinking?

compute
delay

t1

t2

t3

Time point: t1, t2, t3

• Hardware/Circuits

Fail to Compute
Correctly!

3 - Wire Delay

4 - Clock Skew

Timing Quality to Blame

Foundry Library Developer CAD Tool Designer (You!)

Gate Delay Physical
parameters

Cell topology,
Transistor sizing

Cell selection Choose Design
Corner to Consider

Wire Delay Physical
parameters

Place & Route Layout

Cell Input
Capacitance

Physical
parameters

Cell topology,
Transistor sizing

Cell selection

Cell Fanout synthesis HDL

Cell Drive Strength Physical
parameters

Transistor sizing Cell selection

Timing Part: Q2
How to Analysis Timing in VLSI? … STA

Timing Analysis for VLSI

FF

CLK

FF

CLK

Combinational
Logic

Combinational
Logic

Combinational
Logic

Combinational
Logic

X Y

Path 1

Path 2
Path 3

Path 4

Definition of Paths

Timing Analysis for VLSI

STA: Check gate-level netlist to find the timing for all paths

D Q D Q
Combinational

Logic

X

CLK

Data Path

Clock Path

CLK of FF1

CLK of FF2

Hold check
Setup check

Timing Analysis for VLSI

From:Warnock, James D., et al. "The circuit and physical design of the POWER4 microprocessor." IBM Journal of Research and Development 46.1 (2002): 27-51.

Critical Paths Most can meet
Your requirement

Timing Part: Q3
How to improve the design?

Technique 1 – Pipelining

Do less things in one cycle
for faster cycles

Technique 2 – Floor planning

1. Make module connection natural:

• Find good neighbors

2. Leave bus channels

3. Make bus wave guides!

Die photo of Intel first 8b processor 8008

