
嵌入式系统编程与实践

燕博南

2024秋

10010010

4-中断



Interrupts
How peripherals notify the CPU that 

their state just changed.

Example: A button just pressed



Interrupts

• Definition

– An event external to the currently executing process 
that causes a change in the normal flow of instruction 
execution; usually generated by hardware devices 
external to the CPU.

– Key point is that interrupts are asynchronous w.r.t. 
current process

– Typically indicate that some device needs service



Why interrupts?

• MCUs have many external peripherals

– Keyboard, mouse, screen, disk drives, scanner, 
printer, sound card, camera, etc.

– These devices occasionally need CPU service

• But we can’t predict when

– We want to keep the CPU busy (or asleep) 
between events 

– Need a way for CPU to find out devices need 
attention

Slides from Angela Demke Brown CSC 469H1F



Possible Solution: Polling

• CPU periodically checks each device to see if it 
needs service

– “Polling is like picking up your phone every few 
seconds to see if you have a call. …”

Slides from Angela Demke Brown CSC 469H1F



Possible Solution: Polling

• CPU periodically checks each device to see if it 
needs service

– “Polling is like picking up your phone every few 
seconds to see if you have a call. …”

– Cons: takes CPU time even when no requests pending

– Pros: can be efficient if events arrive rapidly 

Slides from Angela Demke Brown CSC 469H1F



Alternative: Interrupts

• Give each device a wire (interrupt line) that it can 
use to signal the processor



Alternative: Interrupts

• Give each device a wire (interrupt line) that it can 
use to signal the processor

– When interrupt signaled, processor executes a 
routine called an interrupt handler to deal with the 
interrupt

– No overhead when no requests pending



How do interrupts work?

Peripheral 2

Peripheral 3

Peripheral 4

Peripheral 1

➔ Interrupt

 Clear interrupt

➔ Peripheral P sends int X 

 ACK P’s int X

 Execute P’s X handler

 ACK P’s int X

Interrupt 
controller

What is the benefit of having
a separate controller for interrupts?

CPU



The Interrupt controller

Fun fact: Interrupt 
controllers used to be

separate chips!

Intel 8259A IRQ chip 
Image by Nixdorf - Own work

• Handles simultaneous interrupts

o Receives interrupts while the CPU
handles interrupts

• Maintains interrupt flags

o CPU can poll interrupt flags instead 
of jumping to a interrupt handler

• Multiplexes many wires to few wires

• CPU doesn’t need a interrupt wire 

to each peripheral



How to use interrupts

1. Tell the peripheral which interrupts you want it to output.

2. Tell the interrupt controller what your priority is for this interrupt. 

3. Tell the processor where the interrupt handler is for that interrupt.

4. When the interrupt handler fires, do your business then clear the int.



CPU execution of interrupt handlers
INTERRUPT

1. Wait for instruction to end

2. Push the program counter to the stack

3. Push all active registers to the stack

4. Jump to the interrupt handler in the 

interrupt vector

5. Pop the program counter off of the stack



RISC-V Platform-Level Interrupt Controller (PLIC)

13

• Interrupt Gateways
• convert global interrupt signals 

into a common interrupt request 
format

• control the flow of interrupt 
requests to the PLIC core

• Interrupt Identifiers (IDs)
• Identify interrupt

• Interrupt Enables (IE)
• stored in a register, 1 bit for each 

source
• Interrupt Notifications

• Notify CPU



Interrupt Flow

14

• Interrupt Claim:
• After receiving an interrupt notification, CPU 

decide to service the interrupt. 
• CPU sends an interrupt claim message to the 

PLIC core. 
• On receiving a claim message, the PLIC core will 

atomically determine the ID of the highest-
priority pending interrupt for the target and 
then clear down the corresponding source’s IP 
bit. 

• The PLIC core will then return the ID to CPU. 



The End

15


	Slide 1: 嵌入式系统编程与实践
	Slide 2: Interrupts
	Slide 3: Interrupts
	Slide 4: Why interrupts?
	Slide 5: Possible Solution: Polling
	Slide 6: Possible Solution: Polling
	Slide 7: Alternative: Interrupts
	Slide 8: Alternative: Interrupts
	Slide 9: How do interrupts work?
	Slide 10: The Interrupt controller
	Slide 11: How to use interrupts
	Slide 12: CPU execution of interrupt handlers
	Slide 13: RISC-V Platform-Level Interrupt Controller (PLIC)
	Slide 14: Interrupt Flow
	Slide 15: The End

